
Module 10

Monitoring and Diagnosis

PostgreSQL

Module Overview

! Checking Whether A User Is Connected

! Checking Which Queries Are Running

! Checking Which Queries Are Active Or Blocked

! Knowing Who Is Blocking A Query

! Finding Slow SQL Statements

! Killing A Specific Session

! Knowing Whether Anybody Is Using A Specific Table

! Analyzing The Real-time Performance Of Your Queries

Introduction
! Databases are not isolated entities. They live on computer

hardware using CPUs, RAM, and disk subsystems. databases
themselves may need network resources to function

! Monitoring only the database is not enough
! Know details like:

!Is the database host available? Does it accept
connections?

!Is there enough RAM available for the most common
tasks? How much of it is left?

!Is there enough disk space available? When will it run out
of disk space?

!When did the disk usage start changing rapidly?

! Tools – Cacti, Munin, Nagios

PostgreSQL Monitoring Tools
! There are several tools available as front-end to PostgreSQL:

!pgAgent
! pgAgent is a job scheduler for PostgreSQL

!pg_statsinfo
!pg_statsinfo in the monitored DB on behalf of the existence of the

form, pg_statsinfo regularly collected snaoshot information and
stored in the warehouse

!pgCluu
!pgCluu is a PostgreSQL performances monitoring and auditing

tool

!phpPgAdmin
!It is a web-based administration tool for PostgreSQL written in PHP

!pgFouine
!It is a log analyzer which creates reports from PostgreSQL log files

Checking Whether A User Is
Connected

! Whether a certain database user is currently connected to the
database.
! Issue the following query to see whether the bob user is connected:

!SELECT datname FROM pg_stat_activity WHERE usename = 'bob';

! pg_stat_activity system view keeps track of all running
PostgreSQL backends.

! Several different processes may connect as the same
database user. In that case, you may actually want to know
whether there is a connection from a specific computer.
! SELECT datname, usename, client_addr, client_port, application_name

FROM pg_stat_activity;
! The client_addr and client_port parameters help you look up

the exact computer and even the process on that computer
that has connected to the specific database.

Checking Which Queries Are
Running

! This can be done either in the postgresql.conf file or by the
superuser, using the following SQL statement:
!SET track_activities = on

!When track_activities = on is set, PostgreSQL collects data about
all running queries

!Command to see the active records:
!SELECT datname, usename, state, query FROM

pg_stat_activity
! To get active queries only, limit your selection to only those

records that have state set to active:

Checking Which Queries Are Active
Or Blocked

! Show you how to know whether a query is actually running or
it is waiting for another query.

! The pg_stat_activity system view has a Boolean field named
waiting. This field indicates that a certain backend is waiting
on a system lock.

! As the waiting column is already Boolean, you can safely omit
the = true part from the query and simply write the following:
! SELECT datname, usename, query FROM pg_stat_activity WHERE

waiting;

SELECT datname , usename , wait_event_type , wait_event ,
query FROM pg_stat_activity WHERE wait_event IS NOT NULL;

Knowing Who Is Blocking A Query
! Once you have found out that a query is blocked, you need

to know who or what is blocking them

! This returns the process ID, user, current query about both
blocked and blocking backends, and the fully qualified name
of the table that causes the blocking.

SELECT datname , usename , wait_event_type , wait_event ,
pg_blocking_pids(pid) AS blocked_by , query FROM pg_stat_activity
WHERE wait_event IS NOT NULL;

Killing A Specific Session
! Once you have figured out the backend you need to kill, use the

function named pg_terminate_backend(pid) to kill it.
! Trying to cancel the query first:

! Try pg_cancel_backend(pid), a milder version of pg_terminate_backend(pid).
! The difference between these two is that pg_cancel_backend() just cancels

the current query, whereas pg_terminate_backend() really kills the backend.

! If pg_terminate_backend(pid) fails to kill the backend, another
option— sending SIGKILL to the offending backend.
! kill -9 <backend_pid>

! Using statement_timeout to clean up queries that take too long to
run

SET statement_timeout TO '3 s’;

Select sleep(10);

Finding Slow SQL Statements

! Several ways to find the statements that are either slow or
cause the database as a whole to slow down.

! Set up logging queries over 10 seconds by defining the
following in postgresql.conf:
! log_min_duration_statement = 10000;

! Spot long queries is to look them up in the pg_stat_activity
system view by repeatedly running this query:
! SELECT now() - query_start AS running_for, query FROM pg_stat_activity

WHERE state = 'active‘ ORDER BY 1 DESC LIMIT 5;

Knowing Whether Anybody Is Using A
Specific Table

! Sometimes are in doubt whether some obscure table is used
any more or it is left over from old times and just takes up
space

! To see whether a table is currently in active use ,run the
following query on the database you plan to inspect:
! SELECT * FROM pg_stat_user_tables;
! The pg_stat_user_tables view shows the current statistics for table

usage

select * from pg_stat_user_tables n
join tmp_stat_user_tables t
on n.relid=t.relid
and (n.seq_scan,n.idx_scan,n.n_tup_ins,n.n_tup_upd,n.n_tup_del) <>
(t.seq_scan,t.idx_scan,t.n_tup_ins,t.n_tup_upd,t.n_tup_del);

Producing a daily summary of log file errors

! PostgreSQL has a hierarchy of log entries that ranges
from DEBUG messages to PANIC

! To the administrator, the following three error levels are of
great importance:
!ERROR - ERROR is used for problems such as syntax errors,

permission-related problems

!FATAL - FATAL is more scary than ERROR, messages such
as could not allocate memory for shared memory
name or unexpected walreceiver state

!PANIC - that something is really, really wrong. Like lock table
corrupted

Producing a daily summary of log file errors

! It makes sense to inspect the log to see what is going on
! You can have a logging configuration of your PostgreSQL

server
! log_destination = syslog
! log_statement = ddl
! log_min_duration_statement = 1000
! log_min_messages = info
! log_checkpoints = on
! log_lock_waits = on

Analyzing The Real-time Performance Of
Your Queries

! The pg_stat_statements extension adds the capability to track
execution statistics of queries that are run in a database,
including the number of calls, total execution time, total
number of returned rows, as well as internal information on
memory and I/O access.

! The pg_stat_statements module is available as a contrib
module of PostgreSQL. The extension must be installed as a
superuser in the desired databases.

! library in the postgresql.conf file, as follows:
! shared_preload_libraries = 'pg_stat_statements'

! You can start by retrieving the list of the most frequent queries:
! SELECT query FROM pg_stat_statements ORDER BY calls DESC;

