
Module 11 
 

Regular Maintenance

PostgreSQL

Planning Maintenance

! Database maintenance is about making your database run
smoothly.

! Decide a regular date on which to perform certain actions.

! Build a regular cycle of activity around the following tasks:

! Observe long-term trends in system performance and keep track of
the growth of database volumes.

! Organize regular reviews of written plans, and test scripts. Check the
tape rotation, confirm that you still have the password to the offsite
backups, and so on.

! To reduce bloat, as well as collecting optimizer statistics through
ANALYZE. Also, regularly check index usage and drop unused indexes.

! What happens is that a database server gets slower over a very long
period. Nobody ever noticed any particular day when it got slow—it
just got slower over time.

Controlling Automatic Database  
Maintenance

! VACUUM reclaims storage occupied by dead tuples

! Tuples that are deleted or obsoleted by an update are not

physically removed from their table

! VACUUM can only be performed by a superuser

! VACUUM will skip over any tables that the calling user does not

have permission to vacuum

! Adding or deleting a large number of rows, it might be a good

idea to issue a VACUUM ANALYZE command for the affected
table

! VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE [table [(column [, ...])]]

Controlling Automatic Database  
Maintenance

parameters Explanation

VACUUM ANALYZE It performs a VACUUM and then an ANALYZE for each selected table.

ANALYZE It collects statistics about the contents of tables in the database, and
stores the results in the pg_statistic system catalog)

COLUMN The name of a specific column to analyze. Defaults to all columns. If a
column list is specified, ANALYZE is implied.

Example : create a big table and insert the values like following
procedure

postgres=# create table k1 as select * from pg_tables;

postgres=# insert into k1 select * from pg_tables;

postgres=# insert into k1 select * from pg_tables;

postgres=# insert into k1 select * from pg_tables;

Controlling Automatic Database  
Maintenance

! Check the k1 table if any dead tubles or fragmented is occure or
not

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# insert into k1 select * from k1;

postgres=# \d pg_stat_all_tables

Controlling Automatic Database  
Maintenance

! update k1 set tableowner=‘sup2’;

! Also, try deleting some records

! And check again

! postgres=# select

n_dead_tup ,last_vacuum,last_analyze,n_tup_upd,
n_tup_del,n_tup_hot_upd,relname ,seq_scan,idx_scan from
pg_stat_all_tables where relname='k1';

postgres=# select
n_dead_tup ,last_vacuum,last_analyze,n_tup_upd,
n_tup_del,n_tup_hot_upd,relname ,seq_scan,idx_scan from
pg_stat_all_tables where relname='k1';

Controlling Automatic Database  
Maintenance

! Autovacuum is enabled by default in PostgreSQL 9.4, and
mostly does a great job of maintaining your PostgreSQL
database

! You must have both of the following parameters enabled in
your postgresql.conf file:

!autovacuum = on

! track_counts = on

! Most of the preceding global parameters can also be set at
the table level. For example, if you think that you don't want
a table to be autovacuumed, then you can set:

!ALTER TABLE big_table SET (autovacuum_enabled = off);

Dealing with bloating tables and indexes
! If the database has been maintained without vacuuming or if the

data is badly structured, we might experience bloating tables and
indexes

! The problem with bloating tables and indexes is that they occupy
more storage space than required

! If there are lots of dead rows in a table, the bloat percentage is
higher

! how to deal with it:

!First, we are going to activate the pgstattuple module

!postgres=# create schema stats;

!postgres=# create extension pgstattuple with schema stats;

!create a table and add some rows into it:

!postgres=# CREATE TABLE num_test AS SELECT * FROM generate_series(1,

100000);

Dealing with bloating tables and indexes
! Use the pgstattuple function, provided by the pgstattuple

extension, to examine row-level statistics for the num_test table:

!postgres=# SELECT * FROM stats.pgstattuple('num_test’);

! delete some data from the num_test table:

!Postgres=# DELETE FROM num_test WHERE generate_series % 2 = 0;

! reuse the pgstattuple module to examine the table bloat in
the num_test table:

!Postgres=# SELECT * FROM stats.pgstattuple('num_test’);

! vacuum the table in order to remove the table bloat:

!Postgres=# VACUUM num_test;

! reexamine the row-level statistics for the num_test table:

!Postgres=# SELECT * FROM stats.pgstattuple('num_test’);

Dealing with bloating tables and indexes
! The following query can help identify whether there are any

bloating indexes for a particular table:

!postgres=# SELECT relname, pg_table_size(oid) as index_size,

100-(stats.pgstatindex(relname)).avg_leaf_density AS bloat_ratio

FROM pg_class WHERE relname ~ 'casedemo' AND relkind = ‘i’;

! To overcome the problem of a bloating index, you need to
rebuild indexes

! To identify the bloats of an index, we have to use another
function called pgstatindex(), as follows:

!postgres=# SELECT * FROM pgstatindex('test_idx');

Removing issues that cause bloat 
 

! Bloat can be caused by long running queries or long running write
transactions that execute alongside write-heavy workloads

! You may want to consider setting
the idle_in_transaction_session_timeoutparameter so that
transactions in that mode will be cancelled

postgres=# SELECT now() - case when backend_xid is not null then xact_start else
query_start end as age, pid, backend_xid as xid, backend_xmin as xmin, state
FROM pg_stat_activity ORDER BY 1 desc;

Adding A Constraint Without Checking
Existing Rows

!A table constraint is a guarantee that must be satisfied by all the
rows in the table

! Therefore, adding a constraint to a table is a two-phase
procedure: first, the constraint is created, and then all the existing
rows are checked

! How to enforce a constraint on future transactions only, without
checking existing rows:

!Enabling the constraint on newer rows of a large table that cannot remain

unavailable for a long time.

! Enforcing the constraint on newer rows, while keeping older rows that are known

to violate the constraint.

! The constraint is marked as NOT VALID to make it clear that it
does not exclude violations, unlike ordinary constraints.

Adding A Constraint Without Checking
Existing Rows

!Example:

!postgres=# CREATE TABLE ft(fk int PRIMARY KEY, fs text);

!postgres=# CREATE TABLE pt(pk int, ps text);

!postgres=# INSERT INTO ft(fk,fs) VALUES (1,'one'), (2,'two’);

!postgres=# INSERT INTO pt(pk,ps) VALUES (1,'I'), (2,'II'), (3,'III’);

!We have inserted inconsistent data on purpose so that any

attempt to check existing rows will be revealed by an error
message

!Create an ordinary foreign key, we get an error:

!postgres=# ALTER TABLE pt ADD CONSTRAINT pc FOREIGN KEY

(pk) REFERENCES ft(fk);

Adding A Constraint Without Checking
Existing Rows

!Example:

!postgres=# ALTER TABLE pt ADD CONSTRAINT pc FOREIGN KEY (pk)

REFERENCES ft(fk) NOT VALID;

!postgres=# d pt

!The violation is detected when we try to transform the NOT

VALID constraint into a valid one:

!postgres=# ALTER TABLE pt VALIDATE CONSTRAINT pc;

!Validation becomes possible after removing the inconsistency:

!postgres=# DELETE FROM pt WHERE pk = 3;

!postgres=# ALTER TABLE pt VALIDATE CONSTRAINT pc;

!postgres=# d pt

