
Module 13 (Part 1) 
 

Backup and Recovery 
 

PostgreSQL

Module Overview
! Understanding and controlling crash recovery

! Planning backups

! Hot logical backup of one database

! Hot logical backup of all databases

! Backup of database object definitions

! Standalone hot physical database backup

! Hot physical backup and continuous archiving

! Recovery of all databases

! Recovery to a point in time

! Few terms which are very important for designing your backup-recovery
and disaster-recovery processes

! Write-Ahead Log (WAL): PostgreSQL writes information to a series of write-

ahead log files, in segments 16 MB in size, before making corresponding
changes to the database itself

! Archiving: Means archiving your transaction/xlog/wal segments/WAL

! Backup: A process in which you take a backup of your database. It can be
logical where you take a backup of tables and rows or it can be physical
where you backup the datafiles and other configuration files needed by your
database/instance/cluster

! Crash Recovery: You had a crash of your database service/server and your
database is recovering from the same. Can be achieved with your WAL
segments/WAL itself

! Point-in-Time Recovery (PITR): If you have a base database and a series of
WAL files, you can apply only some of WAL files and then stop recovering
information from those WAL files.

Terminology

Understanding And Controlling Crash
Recovery

! Crash recovery is the PostgreSQL subsystem that saves us,
should the server crash or fail as part of a system crash.

! PostgreSQL will immediately restart and attempt to recover
using the transaction log or Write- Ahead Log (WAL).

! The WAL consists of a series of files written to the pg_xlog
subdirectory of the PostgreSQL data directory.

! Crash recovery replays the WAL, Recovery starts from points in
the WAL known as checkpoints.

! The duration of a crash recovery depends on the number of
changes in the transaction log since the last checkpoint

! A checkpoint can be either immediate or scheduled

!CHECKPOINT command

Understanding And Controlling Crash
Recovery

! Two parameters control the occurrence of scheduled checkpoints

! checkpoint_timeout : time until the next checkpoint

!Default: 5minute

! max_wal_size: amount of WAL data that will be written before checkpoint

!Default: max_wal_size is set to 1 GB

! wal_keep_segments: specifies the number of 16 MB WAL files to
be retained in the pg_xlog directory

! 16 MB x wal_keep_segments of space

! Recovery continues until the end of the transaction log

! There is no defined end point, recovery always ends with some

kind of error - “the next record does not exist (yet).”

Planning Backups
! The type of backup you take influences the type of recovery

that is possible.

! Consider the following main aspects:

! Full or partial database?

! Everything or just object definitions only?

! Main backup options are the following:

! Logical backup, using pg_dump

! Physical backup, which is a filesystem backup

! The pg_dump utility comes in two main flavors: pg_dump and
pg_dumpall. pg_dump has a -F option for producing backups
in various file formats

! file system backup
using pg_start_backup() and pg_stop_backup()

Hot Logical Backup Of One
Database

! Logical backup makes a copy of the data in the database by
dumping the content of each table.

! The command to do this is simple, as follows:

! pg_dump –F c –f dumpfile

! Or pg_dump -F c > dumpfile

! The pg_dump utility produces a single output file.

! The pg_dump archive file, also known as custom format, is lightly

compressed by default.

! If you are making a script dump, you can do a dump verbose, as

follows:

! pg_dump –v

! Note that pg_dump does not dump roles (such as users and
groups). Those two are only dumped by pg_dumpall.

! Pg_dump—can take the backup of specific table, database, and schema in
specific format like t (tar), p (plain text), d (directory).

! Command to backup database:

! pg_dump -d databasename -f file path –F format

! pg_dump –d db2 –f /var/lib/pgsql/9.3/backups/db2bak –F p

! Command to take backup of table:

! pg_dump -d databasename –t tablename -f file path –F format

! pg_dump –d db2 -t demo1 –f /var/lib/pgsql/9.3/backups/demo1bak –F t

! Command to take backup of schema:

! Pg_dump -d databasename -n schemaname -f file path –F format

! Pg_dump –d db2 -n dbo –f /var/lib/pgsql/9.3/backups/dboschbak –F d

Hot Logical Backup Of All Databases

! To back up all databases, you may be told you need to use
the pg_dumpall utility.

! Some drawbacks of pg_dumpall command:

! If you use pg_dumpall, then the output produced is in a script

file.

! The dumps of individual databases are not consistent to a

particular point in time.

! The pg_dumpall utility produces dumps of each database one

after another. This means that pg_dumpall is slower than running
multiple pg_dump tasks in parallel,

!Options for pg_dumpall are similar in many ways to pg_dump,
though not all of them exist, so some things aren't possible.

Hot Logical Backup Of All Databases

! pg_dumpall- can also take backup of all database in plain
text format:

! Command to backup database:

!pg_dumpall -f file path

!pg_dumpall -f /var/lib/pgsql/9.3/backups/alldbbak

Backup Of Database Object
Definitions

! It's useful to get a dump of the object definitions that make
up a database.

! The basic command to dump the definitions only is the
following:

! pg_dumpall --schema-only > myscriptdump.sql

! If you want to dump PostgreSQL role definitions, you can use
this command:

! pg_dumpall --roles-only > myroles.sql

Online Backup
! Online backup is a way to get a backup under instance startup

condition

! Execute pg_start_backup function for the instance, and back up
all the files of the database cluster

!When this function is executed, WAL offset value at the time of
backup start appears

! The label file "{PGDATA}/backup_label" is also created

! In the label file, start time and WAL of information backup are listed

!postgres=# SELECT pg_start_backup(now()::text) ;

!$ cat data/backup_label

! These operations can be done automatically by pg_basebackup
command

! When the backup is complete, execute pg_stop_backup function

!SELECT pg_stop_backup() ;

Hot physical backup

! The purpose of continuous archiving is to allow us to
recover to any point in time from the time of the backup.

! The key point here is that we must have both the base
backup and the archive in order to recover.

! If you compress WAL files regularly, the files produced by
PostgreSQL 9.5 can be compressed better than those
produced by earlier versions.

! Standalone hot physical backup:

!cd /var/lib/pgsql/9.4/data/

!mkdir –p ../../standalone – this command create a directory outside
the data directory.

!vi postgresql.conf

!archive_mode = on

!archive_command = ‘cp –i %p ../../standalone/archive/%f' 	

!wal_level = replica

!mkdir ../../standalone/archive – create a directory inside
standalone directory

!restart the postgres server: /usr/pgsql-9.4/bin/pg_ctl restart

! psql

! This command runs the checkpoint and create the backup label inside

data directory

!select pg_start_backup(‘backupname’);

!Use a tar command to compress all data directory to make a database
base backup of all the files and sub directory of data folder except
pg_xlog

!tar -cv --exclude="pg_xlog/*" \-f ../../standalone/bak.tar /var/lib/pgsql/9.5/

data

! This command delete the backup label and stops the checkpoint

! psql -c "select pg_stop_backup(), current_timestamp"

!cp ../../standalone/archive archive/ -- Move the files to the archive
subdirectory

! tar -rf ../../standalone/bak.tar archive/ --copy archive directory to tar

!create a recovery.conf file:

!echo “restore_command=’cp archive/%f %p’” >

recovery.conf

!echo “recovery_end_command=’rm –R archive’” >> r

recovery.conf

!tar –rf ../../standalone/bak.tar recovery.conf -- copy

recovery.conf file to tar

!Store the bak.tar somewhere safe is definitely not on the same
server

! The pg_stat_archiver catalogue with following fields:

!archived_count: number of WAL files successfully archived

! last_archived_wal: name of the last successfully archived WAL file

! last_archived_time: timestamp of the last successfully archived WAL
file

! failed_count: number of failed WAL archiving attempts

! last_failed_wal: WAL name of the last archiving failure

! last_failed_time: timestamp of the last archiving failure

! stats_reset : timestamp of the last reset of statistics

! Example :

!postgres=# SELECT * FROM pg_stat_archiver;

Statistics overview

! PostgreSQL Backup Steps

!1. Modify postgresql.conf to support archive log

!2. Make a base backup (full database backup)

!3. Backup base backup to remote storage.

!4. Backup WAL (archive log files) to remote storage

! PostgreSQL Point-in-time Recovery Steps

!1. Extract files from base backup

!2. Copy files from pg_xlog folder

! 3. Create recovery.conf file

!restore_command = 'cp /archive/%f %p'

!recovery_target_time = '2019-04-05 15:43:12’

!SELECT pg_create_restore_point('my_daily_process_ended’);

!recovery_target_name = 'my_daily_process_ended'

! 4. Start Recover

Point in time recovery

! Steps:

!1. Database initialization

! Initialize database	

!# su – postgres

! -bash-$ /usr/pgsql-9.6/bin/initdb

!Start the database

! -bash-$ /usr/pgsql-9.6/bin/pg_ctl -D /var/lib/pgsql/9.6/data -l logfile
start

!2. Make change in Postgresql configuration file (postgresql.conf)

!archive_mode = on

!archive_command = 'cp %p /var/lib/pgsql/9.6/wals/%f' 	//mkdir wals 	
under /var/lib/pgsql/9.6/

Point in time recovery

!wal_level = replica

!Restart the database

!3. Data Simulation & Backup Process

! -bash-$ psql

!# create table tab1 as select * from pg_class; 	//totally 228 records

!# select * from current_timestamp;	 // In my case – 2016-12-13
16:09:47.610651+05:30

!Check the log files under pg_xlog and wals directory

!4. Create a full databse backup – base backup

!# select pg_start_backup('Full Backup');

Point in time recovery

!Use a tar command to compress all data directory to make a
database base backup

! -bash-$ cd /var/lib/pgsql/9.6/

! -bash-$ tar -cvzf backups/databk.tar data

!pgdatabkup.tar this is the full database backup (base backup)
including Postgresql configuration , system and all others files and
folder.

!# select pg_stop_backup(); 

!5. Create tables

!# create table tab2 as select * from pg_class;

!# select current_timestamp;	 	 //In my case, it is 2016-12-13

16:13:18.762008+05:30

!Check the tables with \d

Point in time recovery

!6. We have to do something in order to make our PostgreSQL server
go down.

! -bash-$ /usr/pgsql-9.6/bin/pg_ctl -D /var/lib/pgsql/9.6/data stop	 //
stop the server

!or

! -bash-$ kill -9 $(head -1 /var/lib/pgsql/9.6/data/postmaster.pid)	 //

kill the postmaster

!7.Recovery Process

!Rename data to data.bad.data, assume database file in data
folder was damaged

! -bash-$ mv data data.bad.data

Point in time recovery

! 8. Unzip / extract files from databk.tar. It will extract the data directory to
this current location

! -bash-$ tar -xvzf backups/databk.tar

! -bash-$ cd data/

! -bash-$ rm -rf pg_xlog/*

! Compare wals folder files and data.bad.data/pg_xlog files. Copy log files
from pg_xlog folder. Some log files still located in data.bad.data pg_xlog
folder (those log files hanv’t archive yet) during disaster happening, we
need to copy the log file back and recover it as much as possible.

! And copy files from data.bad.data/pg_xlog to /var/lib/pgsql/9.6/data/
pg_xlog, like below

! -bash-$ cp ../ data.bad.data/pg_xlog/000000010000000000000004 /var/
lib/pgsql/9.6/data/pg_xlog/

! -bash-$ cp ../ data.bad.data/pg_xlog/000000010000000000000005 /var/
lib/pgsql/9.6/data/pg_xlog/

Point in time recovery

! 9. Create a recovery.conf file and put it under /var/lib/pgsql/9.6/data

! restore_command = 'cp /var/lib/pgsql/9.6/wals/%f %p'

! recovery_target_time = '2010-06-01 16:59:14.27452+01'

! 10. Give the permission and Start the database

! -bash-$ chown -R postgres.postgres /var/lib/pgsql/9.6/data/pg_xlog/

! -bash-$ chown -R postgres.postgres recovery.conf

! 12. Start database and output log file to /var/lib/pgsql/9.6/data/pg.log

! -bash-$ /usr/pgsql-9.6/bin/pg_ctl start -D /var/lib/pgsql/9.6/data/ -l logfile

! -bash-$ psql

! postgres=# \d

Point in time recovery

Recovery of the database
! Psql command to restore plain text backup file.

! Command to restore database:

!Create database “newdb” first

!psql –d databasename –U username –f filename

!psql –d newdb –U postgres -f /var/lib/pgsql/9.3/db2bak

! Command to restore table:

!pg_restore -d databasename filename

!pg_restore -d adventureworks /var/lib/pgsql/9.3/t1tablebak

! Command to restore schema :

!pg_restore -d databasename filename

!pg_restore -d postgres /var/lib/pgsql/9.3/dboschemabak

Conclusion

! Most people admit that backups are essential, though
they also devote a very small amount of time to thinking
about the topic.

! Understanding and controlling crash recovery. You need
to understand what happens if the database server
crashes so that you can understand when you might
need to recover.

