
Module 13 (Part 2)

Replication

PostgreSQL

! Fail over: A term which refers to using your secondary site in case there is a
major failure at your primary site.

! Switchover: A term which refers to switching the roles of your Primary and
seconday sites either because Primary site has come up again after a
recent major failure or due to some maintenance work for which you have
to switch the roles

! Warm standby: A standby server which is an exactly (almost real time)
replica of your primary server and is always available in recovery mode and
cannot be accessed until a recovery is triggered

! Hot Standby: A standby server which is an exactly (almost real time) replica
of your primary server and is always available in recovery mode and cannot
be accessed for write commands. But for read queries

! WAL Archive Replication: A replication process where the WAL segments
which have been archived are copied and replayed on the standby server

! Streaming Replication: A replication process where the WAL segments are
copied directly to the standby servers

Terminology

Replication Concepts
! Replication requires understanding, effort, and patience
! Database Replication is the technology used to maintain a

copy of a set of data on a remote system
! Two main reasons for doing replication:

!High Availability – Reducing the chances of data
unavailability by having multiple systems, each holding a full
copy of data

!Data Movement - Allowing data to be used by additional
applications or workload on additional hardware

! Focus is on High availability, where there is no
transformation of the data – Copy data from one
PostgreSQL database server to another

! Database servers are referred as nodes
! Whole group of database servers involved in replication is

known as cluster, but be careful, as term “cluster” is used for
separate meaning elsewhere in PostgreSQL

! A database server that allows a user to make changes is
known as Master or Primary

! A database server that allows read-only access is known as
Hot Standby or Slave

! Physical Streaming Replication (PSR)
!Take the transaction log and ship that data to the

remote node
!PSR requires us to have only a single master node,

though it allows multiple standbys

! Logical Streaming Replication (LSR)
!An efficient mechanism for reading the transaction log

(WAL) and transforming it into a stream of changes, a
process known as logical decoding

!LSR can be used as the basis of multimaster clusters

Practical aspects
! Transfer of replicated data as "streaming“
! It may have downstream nodes that receive replicated data

from it and/or upstream nodes that send data to it
! The time taken to transfer data changes to a remote node is

usually referred to as the latency, or replication delay
! Changes must then be applied to the remote node, which

takes an amount of time known as the apply delay
! The total time a record takes from the master to a downstream

node is the replication delay plus the apply delay
! Either replication will copy all tables, or in some cases, we can

copy a subset of tables, in which case we call it selective
replication

Replication Best Practices
! Use similar hardware and OS on all systems – We may get

performance issues, if we failover to different hardware
! Configure all systems identically as far as possible – Keep

everything possible the same
!Use same mount points

!Use same directory names

!Use same users

! Don’t make one system more important than others in some
way

! Give systems/servers good names to reduce confusion
! If one system fails, never reuse the same name of the old

system i.e., pick another name

! Set the application_name parameter to be the server name
in the replication connection string

! Keep the system clock synchronized
! Use single time-zone – Use Co-ordinated Universal Time (UTC)

!Don’t use the time with Daylight Saving Time

! Monitor each of database servers
! Monitor replication delay between servers
! Replications are useful if data is flowing correctly between

servers
! Monitor the time it takes for data to go from one server to

other

 Hot Standby and Read Scalability
! Hot Standby - allows us to connect to a standby node and

execute read-only queries
! Hot Standby allows to run queries while being continuously

updated through streaming replication
! Multiple Hot Standby nodes can be added to scale the read-

only workload. There is no hard limit, 10, 20 or more…
! Two main capabilities provided by Hot Standby node

! It provides a secondary node in case the primary node fails

!We can run queries on that node

! If we have more than one Hot Standby node, it may be
possible to have one node nominated as standby and others
dedicated to serving queries

! Hot Standby is usable with following:
!Streaming Replication

!While performing a point in time recovery

! You need to configure additional parameters

!Now clean restart your database server on the master
!Wait a few seconds, and restart the standby for these changes

to take effect

!Do not restart standby too quickly

! Configure this once, not every time you restart

On the master, set the following in postgresql.conf
wal_level = ‘replica‘

On the standby, set the following in postgresql.conf
hot_standby = on

Delaying, Pausing and Synchronizing
Replication

! Delaying
! In case of multiple standby servers – To have one or more

servers operating in a delayed apply state e.g., 1 hour behind
the master

! How to do it:
!When you set the recovery_min_apply_delay parameter in

recovery.conf, the application of commit records will be
delayed by the specified duration

!Only commit records are delayed

! If some bad happen , Hot Standby allows you to pause and
resume replay of changes

SELECT pg_xlog_replay_pause();

! To resume (un-pause) processing, use this query:

! Do not promote a delayed standby
! If your delayed standby is the last server available, you

should reset recovery_min_apply_delay, then restart the
server

SELECT pg_xlog_replay_resume();

Setting-Up Streaming Replication
! Streaming replication transfers WAL data directly from

master to the standby
! It integrates security, and

!Reduces replication delay

! Streaming replication refers to the master node as the
primary node; terms can be used interchangeably

! Two main ways to set up streaming replication
!With additional archive

!Without additional archive

How to do it…
! Carry out the following steps:

1. Identify master and standby nodes

2. Configure replication security: Create/Confirm replication
user existence on master node

3. Allow replication user to authenticate. The following will allow
access from any IP Address using md5-encrypted password
authentication though pg_hba.conf file

4. Set logging options in postgresql.conf on both master and
standby nodes

CREATE USER repuser SUPERUSER
 CONNECTION LIMIT 1
 ENCRYPTED PASSWORD ‘root’;

Host replication repuser 127.0.0.1/0 md5

log_connections = on

5. Set following parameters on master in postgresql.conf:

6. Adjust wal_keep_segments on master in postgresql.conf

7. Adjust Hot Standby parameters if required
8. Take a base backup; physical backup

! Start the backup

Max_wal_Senders = 2
Wal_level = ‘replica’
Archive_mode = on
Archive_command = ‘cd .’

wal_keep_segments = 10000

psql -c "select pg_start_backup('base backup for streaming
rep')"

! Copy the data files

! Stop the backup

9. Set recovery.conf parameters on standby

10. Start the standby server
11. Carefully monitor the replication delay until the catch up period
is over

rsync -cva --inplace --exclude=*pg_xlog* ${PGDATA}
$STANDBYNODE:$PGDATA

psql -c "select pg_stop_backup(), current_timestamp"

standby_mode = 'on'
primary_conninfo = 'host=alpha user=repuser'

 Setting-up Streaming Replication
 Security

! Streaming replication is at least as secure as normal user
connections to PostgreSQL

! Standbys are identical copies of the master, so all users exist on all
nodes with identical passwords

! All of the data is identical and all the permissions are the same too

! On the master, perform these steps:
! Enable replication by setting a specific host access rule in pg_hba.conf
! Give the selected replication user/role the REPLICATION attribute

! On the standby, perform these steps:
! Request replication by setting primary_conninfo
! Enable per-server rules, if any, for this server in pg_hba.conf

ALTER ROLE replogin REPLICATION;
Alternatively, create it using this command:
CREATE ROLE replogin WITH REPLICATION;

! In this example we're going to be dealing with two hosts:
Master 192.168.0.1

 Slave 192.168.0.2
! Step 1 : THE MASTER SETUP

!The following are the minimum settings to get the
master host ready for streaming replication:

STREAMING REPLICATION-HOT STANDBY

! Step 2
! Once you've made those changes you'll also need to

create a replication user:

! Step 3
! After the replication user has been created you'll need to

allow it to connect:

STREAMING REPLICATION-HOT STANDBY

! Step 4
! Now stop the service:

! SLAVE CONFIGURATION
! Step 1
! Again we'll be editing the configuration file:

STREAMING REPLICATION-HOT STANDBY

! Step 2

! Step 3
! Now stop the service:

! Connect to master:
!Copy all of your data from the master to the slave

host. You could do that by running this on the master:

STREAMING REPLICATION-HOT STANDBY

! On both the master and the slave, add the postgres
service in firewall settings:

! On both the master and the slave you can now start the
service:

STREAMING REPLICATION-HOT STANDBY

! With both hosts running the service you can now check
on the status of the replication on master machine:

! To pause replication, run following command on Slave
machine:

STREAMING REPLICATION-HOT STANDBY

Upgrading to synchronous replication
! A synchronous replication - commit on the slave is after

commit on master, data might be lost
! A commit has to be flushed to disk by at least one replica,

reduces odds of data loss
! Two things have to be done

! SET synchronous_commit = on;
! synchronous_standby_names on master
! application_name to primary_conninfo in recovery.conf in replica

! Example:
! synchronous_standby_names = 'slave1, slave2, slave3’

! On slave:
!primary_conninfo = '... application_name=slave2'

Logical replication
! One of the new features of PostgreSQL 10 is logical

replication
! Replicating data objects and their changes, based upon

their replication identity
! PostgreSQL supports both mechanisms concurrently –

Logical and Physical
! Logical replication uses a publish and subscribe model
! Subscribers pull data from the publications they subscribe

to
!May re-publish data to allow cascading replication

Logical replication
! On the master (Node 1),

!Set wal_level to logical on postgresql.conf
!show wal_level;

!Create the role REPLICATION

!create ROLE replicator REPLICATION LOGIN PASSWORD
'linux';

!Give the right permissions to the tables that we want to be
replicated

!create table mynames (id int not null primary key, name
text);

! grant ALL ON mynames to replicator;
!Modify the pg_hba.conf

!Host all replicator node2/32 md5

Logical replication
! On the master (Node 1),

!Create the publication

!create publication mynames_pub for table mynames;

! On the (Node 2),
!Modify pg_hba.conf
!Create the structure of the table we want to replicate

!create table mynames (id int not null primary key, name
text);

!Create the subscription

!create subscription mynames_sub CONNECTION
'dbname=db1 host=node1 user=replicator
password=password'

Logical replication
! On the master (Node 1),

! insert into mynames values(1,'micky mouse’);
! On the (Node 2),

! select * from mynames ;
! insert into mynames values(2,'minni');
!select * from mynames ;

! On the master (Node 1),
! select * from mynames ;

!On Node 2

!drop table mynames ;
!create table mynames (id int not null primary key, name text);
!alter subscription mynames_sub refresh publication;

 Managing Streaming Replication
! Replication works well if it’s understood
! Switchover – It is a controlled switch from the master to the

standby
! If performed correctly, there will be no data loss

! To be safe, simply shut down the master node cleanly, using
either the smart or fast shutdown modes

! Failover – It is a forced switch from the master node to a
standby because of the loss of the master
! There is no action to perform on the master; we presume it is

not there anymore

!Now, we need to promote one of the standby nodes to be
the new master

