
Configuration and Server
Control

PostgreSQL

Pg_ctl utility

! Pg_ctl is the utility for initializing a postgresql database
cluster, starting, stopping, or restarting the postgresql
server, or displaying the status of running server

! In start mode a new server is launched

! In stop mode, the server that is running in specified data directory
is shut down

! Restart mode effectively executes a stop followed by a start

! Status mode to check whether a server is running in specified

mode or not

Starting the Database Server 

! Before anyone can access the database , you must start
the database server.

! The database server program is called as postgres

! The simplest way to start the server is :

! $ /usr/pgsql-12/bin/pg_ctl –D /var/lib/pgsql/12/data start –l
logfile

Starting And Stopping The Database
Server

! The word "server“ refers to the database server and its
processes. The word "service" refers to the operating system
wrapper by which the server gets called.

! Specific command to start the server:

! pg_ctl -D /var/lib/pgsql/data start

! Specific command to stop the server using fast mode:

! pg_ctl -D /var/lib/pgsql/data stop

! When you do a stop, all users have their transactions aborted and all
connections are disconnected.

There's more…

! Specific command to stopping the server in an
emergency:

! pg_ctl -D /var/lib/pgsql/data stop -m immediate

! When you do an immediate stop, all users have their transactions
aborted and all connections are disconnected. There is no clean
shutdown, nor is there politeness of any kind.

! An immediate mode stop is similar to a database crash.

Running Multiple Servers On One
System

! Running multiple PostgreSQL servers on one physical
system is possible if it is convenient for your needs.

! Create new data directories for this second instance and
let postgres user own them

! mkdir /var/lib/pgsql/12/data2

! chown postgres.postgres /var/lib/pgsql/12/data2

! Initialize your data directory

! Modify the port parameter in the postgresql.conf file and start

! PostgreSQL servers are controlled using pg_ctl. Everything
else is a wrapper of some kind around this utility

Locating Database Server Files
! The initdb utility populates a given data directory.

! The path to data directory :

! /var/lib/pgsql/12/data

! Once you've located the data directory, you can
look for the files that comprise the PostgreSQL
database server

Locating the Configurations Files

! Server files are initially stored in a location referred to as the data
directory

! The default data directory location is - /var/lib/pgsql/R.r/data

! Execute the SQL query:

!SELECT name, setting FROM pg_settings WHERE category = 'File
Locations’;

Configuration file - postgresql.conf
! Parameters are case-insensitive

! Each line holds one parameter in ‘key-value’ pair separated by

‘=‘, example : shared_buffers = 128MB

! The setting value types can be the following:

! Boolean

!enable_scan = on

! Integer

!max_connections = 100

! Enum

! listen_addresses (comma-separated list of addresses)

! Floating point

!cpu_operator_cost

! String

!archive_command

 Enabling access for network/remote users 

! By default, PostgreSQL allows user if database user is the
same as the system's username

! To enable other connections:

!listen_addresses = '*'

!The listen_addresses parameter specifies which IP

addresses to listen to

Configuration file – pg_hba.conf

! Change the host-based authentication (HBA) file to
refuse all incoming connections.

! The rules are specified in a file and applied by the
postmaster process when connections are attempted.

Changing Parameters
! PostgreSQL allows you to set some parameter settings for

each session or transaction.

! You can change the value of a setting during your session, This

value will then be used for every future transaction, like this:

!SET work_mem = '16MB';

!You can also change it only for the duration of the "current
transaction":

!SET LOCAL work_mem = '16MB';

! The setting will last until you issue this command:

!RESET work_mem;

Finding the Current Configuration
Settings

! We can use the SHOW command like this:

! postgres=# SHOW work_mem;

! Another way of finding the current settings is to access a
PostgreSQL catalog view named pg_settings:

! SELECT * FROM pg_settings WHERE name = 'work_mem’;

! Thus, you can use the SHOW command to retrieve the value
for a setting, or you can access the full details via the catalog
table.

Parameters Are At Non-default
Settings

! We write a SQL query that lists all parameter values, excluding those
whose current value is either the default or set from a configuration file:

!postgres=# SELECT name, source, setting FROM pg_settings WHERE source !

='default'AND source != 'override'ORDER by 2, 1;

Updating The Parameter File
!All the parameters can be set in the parameter file,

which is known as postgresql.conf.

!Some of the parameters take effect only when the server is first

started. Example- shared Buffers

! . To Alter:

!ALTER SYSTEM SET shared_buffers = '1GB';

!After changing the required parameters, we issue a reload
operation to the server, forcing PostgreSQL to reread the
postgresql.conf file. Example : pg_ctl reload

!Some other parameters require a restart of the server for
changes to take effect, for instance, max_connections,
listen_addresses etc.

PostgreSQL – Memory Management
! Parameters recommended for memory management

! Mainly the following parameters:

!About shared_buffers:

!Below 2GB, set to 20% of total system memory.

!Below 32GB, set to 25% of total system memory.

!Above 32GB, set to 8GB

!About work_mem

!Start low: 32-64MB

!About maintenance_work_mem

!10% of system memory, up to1GB

!Maybe even higher if you are having VACUUM problems

PostgreSQL parameters
! Listen_addresses (list) - Sets the host name or IP address(es) to listen

to. Set your listen_address as restrictively as possible; '*' should only
be used for development machines

! Shared memory is accessible by all postgres server processes.

! The biggest chunk of memory is shared_buffers. Postgres suggests to

use 25% of RAM

! The WAL buffers are normally much smaller, 1/32 of shared buffers is

default

! Ideally, your tables are not too large and your RAM is not too small, so
you can afford setting autovacuum_work_mem to reflect your smallest
table size

!No more than autovacuum_max_workers workers, each uses
maintainance_work_mem or autovacuum_work_mem of RAM

PostgreSQL parameters
! Port (integer) - Sets the TCP port the server listens on. Alternate

ports are primarily useful for running several versions, or instances, of
PostgreSQL on one machine. However, if you're using an alternate
port to support several versions

! max_connections(integer) - Sets the maximum number of concurrent
connections. In general, if you need more than 1000 connections, you
should probably be making more use of connection pooling

! shared_buffers(memory) - Sets the number of shared memory buffers
used by the server.	 A memory quantity defining PostgreSQL's
"dedicated" RAM, which is used for connection control, active
operations, and more. Also note that shared_buffers over 2GB is only
supported on 64-bit systems

! work_mem(integer) - Sets the maximum memory to be used for query
workspaces. This much memory can be used by each internal sort
operation and hash table before switching to temporary disk files

PostgreSQL parameters

! temp_buffers (memory) - Sets the maximum number of temporary
buffers used by each session. Currently used only for holding
temporary tables in memory

! maintenance_work_mem(integer) - Sets the maximum memory to be used
for maintenance operations. This includes operations such as VACUUM and
CREATE INDEX.	 Sets the limit for the amount that autovacuum, manual
vacuum, bulk index build and other maintenance routines are permitted
to use

! autovacuum(bool) - Starts the autovacuum subprocess. Starts the daemon
which cleans up your tables and indexes, preventing bloat and poor
response times

! autovacuum_naptime(integer) - Time to sleep between autovacuum runs

PostgreSQL parameters
! wal_buffers(integer) - Sets the number of disk-page buffers in shared

memory for WAL

! wal_writer_delay(integer) - WAL writer sleep time between WAL flushes.

! checkpoint_timeout(integer) - Sets the maximum time between automatic

WAL checkpoints

! bgwriter_delay(time) - Background writer sleep time between rounds.	Thanks

to bgwriter autotuning, it should no longer be necessary for most users to
touch the bgwriter settings

! bgwriter_lru_maxpages(integer) - Background writer maximum number of
LRU pages to flush per round

! archive_command(string) - Sets the shell command that will be called to
archive a WAL file. All of the Archiving settings are part of a Point In Time
Recovery or Warm Standby configuration -- archive_mode

! archive_mode(bool) - Allows archiving of WAL files using archive_command.

PostgreSQL parameters

! log_destination (string) - Sets the destination for server log output.
Valid values – stderr, csvlog

! log_directory(string) - Sets the destination directory for log files

! log_filename(string) - Sets the file name pattern for log files

! log_rotation_age(integer) - Automatic log file rotation will occur

after N minutes

! log_rotation_size (integer) - Automatic log file rotation will occur

after N kilobytes.

! search_path(list) - Sets the schema search order for names that

are not schema-qualified

The Basic Server Configuration Checklist

! PostgreSQL arrives configured for use on a shared system,
though many people want to run dedicated database systems

! or instance, PostgreSQL is able to store information to the disk
when the available memory is too Small

! It's better to be conservative. It is good practice to set a low
value in your postgresql.conf and increment slowly to ensure
that you get the benefits from each change

! If you're doing heavy write activity, then you may want to set
wal_buffers to a much higher value than the default.

! If your database has many large queries, you may wish to set
work_mem to a value higher than the default.

! Ensure that autovacuum is turned on, unless you have a very
good reason to turn it off.

