
Module 8 
 

Security 

PostgreSQL

Module Overview
! The Postgresql Superuser

! Creating A New User

! Giving Limited Superuser Powers To Specific Users

! Granting User Access To A Table

! Revoking User Access To A Table

! Temporarily Preventing A User From Connecting

! Removing A User Without Dropping Their Data

! Checking Whether All Users Have A Secure Password

! Always Knowing Which User Is Logged In

! Inspecting permissions

! Connecting using SSL

! Using SSL certificates to authenticate

The Postgresql Superuser

! A PostgreSQL superuser is a user that can do anything in the
database regardless of what privileges it has been granted.

! A user becomes a superuser when it is created with the
SUPERUSER attribute set:

! CREATE USER username SUPERUSER;

! The PostgreSQL system comes set up with at least one
superuser. Most commonly, this superuser is named postgres.

! In addition to SUPERUSER, there are two lesser attributes—
CREATEDB and CREATEUSER—that give the user only some of
the power reserved to superusers, namely creating new
databases and users.

Creating A New User

! To create new users, you must either be a superuser or have
the CREATEROLE or CREATEUSER privilege.

! Create the users by following commands:

! CREATE USER bob;

! CREATE USER alice CREATEDB;

! You can check the attributes of a given user in psql, as follows:

!pguser=# \du alice

There's more…

! The CREATE USER and CREATE GROUP commands are
actually variations of CREATE ROLE.

! The CREATE USER username; statement is equivalent to
CREATE ROLE username LOGIN;

! The CREATE GROUP groupname; statement is equivalent
to CREATE ROLE groupname NOLOGIN; .

PostgreSQL security levels

! PostgreSQL has different security levels defined on PostgreSQL
object

! postgres=# \h GRANT

!Database security level

!Disallow users from connecting to the database

!postgres=# REVOKE ALL ON DATABASE warehouse FROM public;

!To allow the user to connect to the database

!postgres=# GRANT CONNECT ON DATABASE warehouse TO test_user;

!Schema security level

!To allow a user access to a certain schema, the usage permissions

should be granted:

!postgres=# GRANT USAGE ON SCHEMA finance TO test_user,

public_user;

PostgreSQL security levels

! Table-level security

! The table permissions are INSERT, UPDATE, DELETE, TRIGGER, REFERENCE, and

TRUNCATE

! GRANT ALL ON <table_name> TO <role>;

! Column-level security

! PostgreSQL allows permissions to be defined on the column level

! CREATE TABLE test_column_acl(f1 integer, f2 integer);

! Insert into test_column_acl values (1,2), (3,4);

! CREATE ROLE test_column_acl login password ‘root’;

! GRANT SELECT (f1) ON test_column_acl TO test_column_acl;

! GRANT USAGE ON SCHEMA public TO test_column_acl;

! \c warehouse test_column_acl

! SELECT * FROM public.test_column_acl;

! SELECT f1 FROM public.test_column_acl;

PostgreSQL security levels

! A table has always been shown as a whole

! Row Level security

! To configure permissions is to come up with policies

! The CREATE POLICY command is there

! Example:

! test=# \c test postgres

! test=# CREATE TABLE t_person (gender text, name text);

! test=# INSERT INTO t_person VALUES ('male', 'joe'),('male', 'paul'),('female', 'sarah'),(NULL, 'R2- D2’);

! Then access is granted to the joe role:

! Test=#Create user joe password ‘root’;

! test=# GRANT ALL ON t_person TO joe;

! test=# \c test joe

! test=> SELECT * FROM t_person;

! test=# \c test postgres

! test=# ALTER TABLE t_person ENABLE ROW LEVEL SECURITY;

! test=# \c test joe

! test=> SELECT * FROM t_person;

PostgreSQL security levels

! test=# \c test postgres

! test=# CREATE POLICY joe_pol_1

 ON t_person FOR SELECT TO joe

 USING (gender = 'male’);

! test=# \c test joe

! test=> SELECT * FROM t_person;

! test=# \c test postgres

! test=# CREATE POLICY joe_pol_2

 ON t_person FOR SELECT TO joe

 USING (gender IS NULL);

! test=# \c test joe

! test=> SELECT * FROM t_person;

Granting User Access To A Table

! Granting access to a table through a group role

!CREATE GROUP webreaders;

!GRANT SELECT ON sometable TO webreaders;

!GRANT INSERT ON sometable TO webreaders;

!GRANT webreaders TO tim, bob;

Granting User Access To A Table

! A user needs to have access to a table in order to perform
any action on it.

! Grant access to the schema containing the table, as follows:

! GRANT SELECT, INSERT, UPDATE, DELETE ON someschema.sometable TO

somerole;

! GRANT somerole TO someuser, otheruser;s

! There is no requirement in PostgreSQL to have some privileges
in order to have others. This means that you may well have
"write-only" tables, where you are allowed to insert but you
can't select

! Grant access to all objects is schema:

! GRANT SELECT ON ALL TABLES IN SCHEMA staging TO bob;

Revoking User Access To A Table

! The current user must either be a superuser, the owner of the
table, or a user with a GRANT option for the table.

! To revoke all rights on the table1 table from the user2 user, you must run

the following SQL command:

!REVOKE ALL ON table1 FROM user2;

!REVOKE ALL ON table1 FROM PUBLIC;

! Using psql, display the list of roles that have been granted at least one
privilege on table1, by issuing \z table1.

Revoking User Access To A Table

! Sample extract from database creation script

CREATE TABLE table1(

...

);

REVOKE ALL ON table1 FROM GROUP PUBLIC;

GRANT SELECT ON table1 TO GROUP webreaders;

GRANT SELECT, INSERT, UPDATE, DELETE ON table1 TO editors;

GRANT ALL ON table1 TO admins;

Setting Parameters For Particular 
Groups Of Users

!You can set parameters for each of the following:

!Database

!User (which is named role by PostgreSQL)

!Database/user combination

!Define parameter settings for various user groups:

!For all users in the demo database, use the following commands:

!ALTER DATABASE demo SET configuration_parameter = value1;

!For a user named simon connected to any database, use this:

!ALTER ROLE Simon SET configuration_parameter = value2;

!For a user only when connected to a specific database, as follows:

!ALTER ROLE Simon IN DATABASE demo SET configuration_parameter =

value3;

Giving Users Their Own Private
Database

! Separating data and users is a key part of administration.
There will always be a need to give users a private, secure, or
simply risk-free area.

! Create a database for a specific user command:

! create database fred owner = fred;

! As the database owners, users have login privileges, so they can connect to

any database by default.

! We need to revoke the privilege to connect to our new database from

everybody except the designated user.

!BEGIN;

!REVOKE connect ON DATABASE fred FROM public;

!GRANT connect ON DATABASE fred TO fred;

!COMMIT;

! Superusers can still connect to the new database, and there
is no way to prevent them from doing so.

Preventing New Connections

! In certain emergencies, you may need to lock down the server
completely, or just prevent specific users from accessing the
database.

! Connections can be prevented in a number of ways, as follows:

! Stop the server

! Restrict the connections for a specific database to zero.

!ALTER DATABASE foo_db CONNECTION LIMIT 0;

! Restrict the connections for a specific user to zero by setting the
connection limit to zero.

!ALTER USER foo CONNECTION LIMIT 0;

Restricting Users To Only One Session
Each

! We can restrict users to only one connection using the following
command:

! postgres=# ALTER ROLE fred CONNECTION LIMIT 1;

! Even if you set the connection limit to zero for superusers, they
will still be able to connect.

! If you lower the limit, you should immediately check to see
whether there are more sessions connected than the new limit
you just set.

! postgres=> SELECT rolconnlimit FROM pg_roles WHERE rolname = 'fred';

Temporarily Preventing A User From
Connecting

! Sometimes, you need to temporarily revoke a user's
connection rights without actually deleting the user or
changing the user's password.

! To temporarily prevent the user from logging in, run this
command:

! pguser=# alter user bob nologin;

! The same result can be achieved by setting a connection
limit for that user to 0:

! pguser=# alter user bob connection limit 0;

Pushing Users Off The System

! You can terminate a user's session with the
pg_terminate_backend() function. That function takes
the PID, or the process ID, of the user's session on the
server.

! A safer and more useful query that gives a useful
response in all cases, which is as follows:

! postgres=# SELECT count(pg_terminate_backend(pid)) FROM

pg_stat_activity WHERE usename NOT IN (SELECT usename FROM
pg_user WHERE usesuper);

 Removing a User Without Dropping  
 Their Data

! When trying to drop a user who owns some tables or other
database objects, you get the following error, and the user is
not dropped:

! Prevent the user from connecting:

!pguser=# alter user bob nologin;

! Assign the rights of the user to a new user, using the following code:

!pguser=# grant bob bobs_replacement;

! Assigns ownership of all database objects currently owned by the
bob role to the bobs_replacement role and it works only on current
database:

! REASSIGN OWNED BY bob TO bobs_replacement;

Always Knowing Which User Is
Logged In

! we just logged the value of the user variable in the current
PostgreSQL session to log the current user role.

! It is possible to check the logged-in role using the current_user
variables:

! postgres=> select current_user, session_user;

! Prepare the required group roles for different tasks and
access levels by granting the necessary privileges and
options.

Authentication best practices

! Depends on the whole infrastructure setup, the application's
nature, the user's characteristics, data sensitivity etc

! Often, database servers are isolated from the world using
firewalls

! If the application server and database server are not on the
same machine, one can use a strong authentication method,
such as LDAP, SSL

! To authenticate an application, recommended to use only
one user and reduce the maximum number of allowed
connections using a connection pooling software

! If the database server is accessed from the outer world, it is
useful to encrypt sessions using SSL certificates

