
PostgreSQL AQMS backup and
restore
From PNSNWikiDocs

This page deals with the specifics of database backup on PNSN PostgreSQL AQMS
systems. A general overview of PostgreSQL database backup can be found at
PostgreSQL#backup/transfer of database.

Contents

1 backup overview
2 overview on generating point-in-time backups

2.1 pg_dump/pg_dumpall
2.2 pg_base_backup

2.2.1 pg_basebackup shell command
2.2.2 via low-level api's

3 WAL files
4 implementation

4.1 base backup
4.2 wal archiving

5 restore

backup overview

PostgreSQL have two mechanisms for backup that are relevant to us. We will
follow the following multiply-redundant backup strategy:

pp streaming replication - PostgreSQL streaming replication is used to
continuously replicate the state of the 'master' post-processing database on
pp1 or pp2 to the 'shadow' instance on the other pp machine. The 'shadow'
instance is then becomes a hot-standby server with read-only access to its
database.
database dump - at a fixed interval (weekely?), the current state of the
database is saved to a dump file and migrated to long-term storage.
WAL shipping (AKA Point In Time Recovery or PITR) - logical Write-Ahead-
Logs (WAL) are continuously written on the master system and streamed to
the standby system. These can be either discarded or saved to allow spinning

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

1 of 7 5/15/20, 4:30 PM

up a database to the current state from a prior full database dump. This can
be accomplished by periodically migrating WAL files from storage on the
master to off-server storage. Older WAL files are cleaned when the next full
database dump makes them superfluous.

overview on generating point-in-time backups

pg_dump/pg_dumpall

It is possible (and recommended by some) to do the database dump step with
pg_dump or pg_dumpall, but the resulting file will not be a valid starting point for
a WAL update. This is because the dumps do not contain information to allow the
WAL files to sync to the state of the dump. This is called an 'exclusive' method, as
database writes during the backup can put the backup in an inconsistent state.
For AQMS we sill implement a more complicated 'non-exclusive' solution that will
(in theory) allow restoration of current state from backup at any point.

pg_base_backup

The recommended way to do backups is to use the 'non-exclusive' pg_basebackup
method. This can be done either using the low-level api's directly, or using the
pg_basebackup shell command, which is a wrapper for the api's. pg_basebackup
makes a binary copy of the database cluster files, while making sure the system is
put in and out of backup mode automatically. Backups are always taken of the
entire database cluster; it is not possible to back up individual databases or
database objects. For individual database backups, a tool such as pg_dump must
be used.

Both base backup strategies rely on replication slots. They can operate as a 'pull'
operation from one host to another, but for now we will execute on the database
host machine. Both require a pg_hba entry of the form:

local replication,repmgr repadmin trust
host replication,repmgr repadmin 127.0.0.1/32 trust
host replication,repmgr repadmin 172.25.16.28/32 trust
host replication,repmgr repadmin 172.25.16.29/32 trust

pg_basebackup shell command

(the easy way)

See https://www.postgresql.org/docs/10/static/app-pgbasebackup.html

This is simple one-stop operation and can be run from a second connected
machine using the replication infrastructure and user. This can save files as either

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

2 of 7 5/15/20, 4:30 PM

regular files or tar archives.

via low-level api's

(the hard way..but more flexible)

It is possible to duplicate the functionality of the shell command with even more
flexibility using the underlying api calls. We won't use this, but it does give insight
into what is going on under the hood.

From https://www.postgresql.org/docs/10/static/continuous-archiving.html:

1. Ensure that WAL archiving is enabled and working.
2. Connect to the server (it does not matter which database) as a user with

rights to run pg_start_backup (superuser, or a user who has been granted
EXECUTE on the function) and issue the command: 'SELECT
pg_start_backup('label', false, false);' where label is any string you want to
use to uniquely identify this backup operation.

The connection calling pg_start_backup must be maintained until the
end of the backup, or the backup will be automatically aborted.
By default, pg_start_backup can take a long time to finish. This is
because it performs a checkpoint, and the I/O required for the
checkpoint will be spread out over a significant period of time, by
default half your inter-checkpoint interval (see the configuration
parameter checkpoint_completion_target). This is usually what you
want, because it minimizes the impact on query processing. If you want
to start the backup as soon as possible, change the second parameter to
true, which will issue an immediate checkpoint using as much I/O as
available.
The third parameter being false tells pg_start_backup to initiate a non-
exclusive base backup.

3. Perform the backup, using any convenient file-system-backup tool such as tar
or cpio (not pg_dump or pg_dumpall). It is neither necessary nor desirable to
stop normal operation of the database while you do this. Backup will proceed
to update state until the following command.

4. In the same connection as before, issue the command: 'SELECT * FROM
pg_stop_backup(false, true);' This terminates backup mode.

On a primary, it also performs an automatic switch to the next WAL
segment.
On a standby, it is not possible to automatically switch WAL segments,
so you may wish to run pg_switch_wal on the primary to perform a
manual switch. The reason for the switch is to arrange for the last WAL
segment file written during the backup interval to be ready to archive.
The pg_stop_backup will return one row with three values. The second
of these fields should be written to a file named backup_label in the root

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

3 of 7 5/15/20, 4:30 PM

directory of the backup. The third field should be written to a file named
tablespace_map unless the field is empty. These files are vital to the
backup working, and must be written without modification.

Once the WAL segment files active during the backup are archived, you are done.
The file identified by pg_stop_backup's first return value is the last segment that is
required to form a complete set of backup files. On a primary, if archive_mode is
enabled and the wait_for_archive parameter is true, pg_stop_backup does not
return until the last segment has been archived. On a standby, archive_mode must
be always in order for pg_stop_backup to wait. Archiving of these files happens
automatically since you have already configured archive_command. In most cases
this happens quickly, but you are advised to monitor your archive system to ensure
there are no delays. If the archive process has fallen behind because of failures of
the archive command, it will keep retrying until the archive succeeds and the
backup is complete. If you wish to place a time limit on the execution of
pg_stop_backup, set an appropriate statement_timeout value, but make note that
if pg_stop_backup terminates because of this your backup may not be valid.

If the backup process monitors and ensures that all WAL segment files required
for the backup are successfully archived then the wait_for_archive parameter
(which defaults to true) can be set to false to have pg_stop_backup return as soon
as the stop backup record is written to the WAL. By default, pg_stop_backup will
wait until all WAL files have been archived, which can take some time. This option
must be used with caution: if WAL archiving is not monitored correctly then the
backup might not include all of the WAL files and will therefore be incomplete and
not able to be restored.

WAL files

Wall files will be found in the pg_wal subdirectory of the PostgreSQL data
directory (e.g. /var/lib/pgsql/10/data/pg_wal). They are maintained by postgres
using settins from postgresql.conf. For backup purposes, the most important
setting is 'wall_keep_segments'. This configures the number of wal files to keep on
master AFTER transmission to standby server. By default this is zero, but we want
something much larger.

For backup purposes, one must keep a copy of all WAL files from the last snapshot
backup in order to be able to restore current state. This can be done by
automatically copying files from pg_wal to an archival location. This is done by
adding something like following to postgresql.conf:

archive_mode = on
archive_command = 'test ! -f /archive/dbbackup/wal/%f && cp %p /archive/dbbackup/wal/%f'

Postgres will replace %f with the target filename and %p with the full target file

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

4 of 7 5/15/20, 4:30 PM

path. More complicated options can be used, including dedicated scripts with lots
of error checking. The important thing is that the command needs to return zero
exit status if and only if it succeeds.

'archive_mode = on' will archive only on primary database. To archive on both
primary and standby, set archive_mode to 'always'.

It is extra safe to keep wal files back to the next to last snapshot. Cleanup is very
easy using the pg_archivecleanup command:

postgres>$ pg_archivecleanup -d /archive/dbbackup/wal/ 000000010000003700000010.00000020.backup

This can also be incorporated in recovery.conf on the standby instance:

archive_cleanup_command = 'pg_archivecleanup /archive/dbbackup/wal/ %r'

implementation

base backup

The software for a point-in-time backup is wrapped in the bash script /var/lib
/pgsql/scripts/backup.sh. It writes output to /archive/dbbackup/yymmdd
/base.tar.gz, which should be independently automatically synced to other backup
servers. The first run took less than a minute, but expect longer when our
database gets bigger.

Run by crontab on all servers with xx1-xx2 pairs running alternate weeks.

We are setting our backups to include wal files pulled after the base backup, so
the result is sufficient to restore the state of the system at the end of the backup.

wal archiving

WAL files are archived automatically to the /archive/dbbackup/wal directory where
they can be independently rsynced off-host. They are intended to be used to
restore the state of a system from the point of the last base backup to some later
state.

WAL files are only archived on the PP primary, not the shadow.

At first we will keep these archived wal files for two base-backup cycles to provide
redundancy and allow point-in-time recovery farther back in time. That policy may
change in the future.

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

5 of 7 5/15/20, 4:30 PM

restore

We assume you are starting with a fairly bare freshly installed machine and an
existing point-in-time backup.

First install database software as described in PostgreSQL#server installation.
Next install all the extras as described in PostgreSQL AQMS.

Copy tarred base backup and wall files to new machine. In our case we will put
them in /var/lib/postgres/10/restore.

[root@localhost 10]# chown -R postgres:postgres /var/lib/pgsql/10/restore
[root@localhost 10]# sudox postgres
-bash-4.2$ cd 10/restore
-bash-4.2$ tar -xvzf base.tar.gz

This expands in place (no subdir creation) filling the restore directory with the
state of the system at the time of the last base_backup.

This is a good time to make necessary changes to postgresql.conf, pg_hba.conf
etc. For example, you may want to comment the "shared_preload_libraries =
'pglogical'" line in postgresql.conf if that extension is not installed.

Copy the contents into the currently empty /var/lib/pgsql/10/data directory. Copy
allows you to keep the original if things don't work right.

If you have archived wal files from after the last base_backup was taken,

1. cd to the data directory
2. delete files in the unzipped pg_wal directory. These are relative to the last

base_backup.
3. copy any unarchived WAL files you might have into pg_wal.
4. create a file recovery.conf with minimum contents like:

restore_command = 'cp /var/lib/pgsql/10/restore/wal/%f "%p"'

On startup, the recovery.conf file is read as all the relevant WAL files are loaded
into the database, bringing you up to the latest state. You can specify other target
states. See https://www.postgresql.org/docs/10/static/recovery-target-
settings.html.

Now, all that remains, as root:

[root@vtahoma ~]# systemctl start postgresql-10
[root@vtahoma ~]# systemctl status postgresql-10
● postgresql-10.service - PostgreSQL 10 database server

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

6 of 7 5/15/20, 4:30 PM

 Loaded: loaded (/usr/lib/systemd/system/postgresql-10.service; disabled; vendor preset: disabled)
 Active: active (running) since Tue 2018-10-02 19:19:31 EDT; 6s ago
 Docs: https://www.postgresql.org/docs/10/static/
 Process: 11169 ExecStartPre=/usr/pgsql-10/bin/postgresql-10-check-db-dir ${PGDATA} (code=exited, status=0/SUCCESS)
 Main PID: 11174 (postmaster)
 CGroup: /system.slice/postgresql-10.service
 ├─11174 /usr/pgsql-10/bin/postmaster -D /var/lib/pgsql/10/data/
 ├─11176 postgres: logger process
 ├─11178 postgres: checkpointer process
 ├─11179 postgres: writer process
 ├─11180 postgres: wal writer process
 ├─11181 postgres: autovacuum launcher process
 ├─11182 postgres: archiver process
 ├─11183 postgres: stats collector process
 └─11184 postgres: bgworker: logical replication launcher

Log file will show something like:

2018-10-02 16:19:30 PDT @: [11177] LOG: database system was interrupted; last known up at 2018-09-30 04:06:02 PDT
2018-10-02 16:19:31 PDT @: [11177] LOG: recovered replication state of node 1 to 0/1BC29D78
2018-10-02 16:19:31 PDT @: [11177] LOG: recovered replication state of node 3 to 0/4CB09408
2018-10-02 16:19:31 PDT @: [11177] LOG: redo starts at 4/D7000028
2018-10-02 16:19:31 PDT @: [11177] LOG: consistent recovery state reached at 4/D72A69B0
2018-10-02 16:19:31 PDT @: [11177] LOG: redo done at 4/D72A69B0
2018-10-02 16:19:31 PDT @: [11177] LOG: last completed transaction was at log time 2018-09-30 04:06:35.226575-07
2018-10-02 16:19:31 PDT @: [11174] LOG: database system is ready to accept connections

Works! When the recovery to the most recent state is complete, 'recovery.conf' is
automatically renamed to 'recovery.done' so that it won't run on next restart.

Retrieved from "https://internal.pnsn.org/LOCAL/WikiDocs
/index.php?title=PostgreSQL_AQMS_backup_and_restore&oldid=49275"
Categories: PostgreSQL AQMS

This page was last modified on 16 October 2018, at 11:38.
This page has been accessed 283 times.

PostgreSQL AQMS backup and restore - PNSNWi... https://internal.pnsn.org/LOCAL/WikiDocs/index....

7 of 7 5/15/20, 4:30 PM

