
Data Types 
Oracle and PostgreSQL do not use the same data types. When porting the schema (table 
creation scripts), I tried to translate each Oracle data-type to its equivalent PostgreSQL 
data-type. 
 
However, Oracle is very easy going about numeric data types because everything is a 
“NUMBER” and allows implicit casting of FLOAT or DOUBLE PRECISION float data-types to 
NUMBER in pretty much all contexts. PostgreSQL does not.  Furthermore, PostgreSQL does 
not do any implicit data type casts when you pass an argument to a function. That argument has 
to be the exact type that the function expects. 
 
The Jiggle code casts almost all numerical variables to double, which the JDBC by default turns 
into a java.sql.Types.DOUBLE type, which in Oracle turns into a NUMBER data-type, but in 
PostgreSQL turns into a DOUBLE PRECISION float type, rather than NUMERIC. Therefore, it 
first needs to be explicitly cast to a java.math.BigDecimal before writing them to PostgreSQL 
using JDBC or before passed them to a PL/pgSQL stored function if that function expects 
NUMERICs as input. 
 
The C++ code use OTL as abstraction layer between the C++ codes and the databases. The 
Java code uses the JDBC (ODBC and PostgreSQL JDBC) drivers. The C++ code casts 
numbers to LONG or DOUBLE, both are 8 bytes long, it does not know of Decimal numbers. 
Java does have a data type that can represent very high precision numbers as Decimals, called 
java.math.BigDecimal. The question now is, shall I change Jiggle to use BigDecimals that get 
converted to NUMERIC or shall I change the schema to use DOUBLE PRECISION instead? I 
decided to learn more about the pros and cons. 
 
Conclusion: I changed the schema to use DOUBLE PRECISION rather than NUMERIC 
because NUMERICS take more storage and none of the programs that write to the database 
currently write higher precision than doubles and longs. 
 

Numeric DataTypes 
 
Oracle docs about NUMBER type: 
Oracle Database stores numeric data in variable-length format. Each value is stored in scientific 
notation, with 1 byte used to store the exponent and up to 20 bytes to store the mantissa. The 
resulting value is limited to 38 digits of precision. Oracle Database does not store leading and 
trailing zeros. For example, the number 412 is stored in a format similar to 4.12 x 102, with 1 
byte used to store the exponent(2) and 2 bytes used to store the three significant digits of the 
mantissa(4,1,2). Negative numbers include the sign in their length. 
 



Taking this into account, the column size in bytes for a particular numeric data value 
NUMBER(p), where p is the precision of a given value, can be calculated using the following 
formula: 
 
ROUND((length(p)+s)/2))+1 
where s equals zero if the number is positive, and s equals 1 if the number is negative. 
 
Zero and positive and negative infinity (only generated on import from Oracle Database, Version 
5) are stored using unique representations. Zero and negative infinity each require 1 byte; 
positive infinity requires 2 bytes. 
 
PostgreSQL docs about NUMERIC type: 
Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the 
declared precision and scale of a column are maximums, not fixed allocations. (In this sense the 
numeric type is more akin to varchar(n) than to char(n).) The actual storage requirement is two 
bytes for each group of four decimal digits, plus three to eight bytes overhead. 
 
These descriptions *sound* very similar, but in practice they are not, because of the mysterious 
“overhead”. For most numbers, the storage needed for a NUMERIC is much more than needed 
for a INTEGER, REAL, BIGINT, or DOUBLE PRECISION. See here some examples: 
 
In PostgreSQL: 
Smallest NUMERIC TYPE number stored: 2+3 = 5 bytes, example is 0.62. 
But 8.8 as NUMERIC takes 10 bytes, vs 8 as a DOUBLE PRECISION and 4 as a REAL 
NUMERIC(15,0) stored: 4*2 + 8 = 16 bytes a BIGINT only takes 8. 
 
In Oracle: 
0.62 uses 2 bytes, 8.8 uses 3 bytes, an integer with 10 digits takes 6 bytes. It really only uses 
[(significant digits)/2 plus 1] byte or less. 
 
In the table below I’m comparing the size of a NUMERIC to that of a DOUBLE PRECISION. 
You can see that the NUMERIC datatypes usually take a lot more space than a DOUBLE 
PRECISION. Notice the number 8.8 taking up 10 bytes as a NUMERIC vs. 8 bytes as a 
DOUBLE PRECISION data type, and even when the 8.8 is stored specifically as a 
NUMERIC(8,1), i.e. a single decimal digit, it uses 10 bytes. Oddly enough, 0.62 only uses 5 
bytes, which is the smallest possible NUMERIC. 

 

rtdb=> select n.num,s.num as size,n.dbl,s.dbl as size, n.remark as input_format from numbers 

n, sizes s where n.num=s.this_number and n.remark=s.input_type order by n.num; 

                 numeric                 | size |         double          | size | 

input_format  

-------------------------------------+------+----------------------+------+------------------ 

              0.00000000000452541334 |    9 |       4.52541334e-12 |    8 | NUMERIC 

 0.000000000004525413341245266799123 |   17 | 4.52541334124527e-12 |    8 | NUMERIC 

                      0.000452541334 |   12 |       0.000452541334 |    8 | DOUBLE PRECISION 



                      0.000452541334 |    9 |       0.000452541334 |    8 | NUMERIC 

                                0.62 |    5 |                 0.62 |    8 | DOUBLE PRECISION 

                                 8.8 |   10 |                  8.8 |    8 | DOUBLE PRECISION 

                                 8.8 |   10 |                  8.8 |    8 | NUMERIC 

     12.2345787249881353497414972475 |   22 |     12.2345787249881 |    8 | NUMERIC 

                                 123 |    8 |                  123 |    8 | DOUBLE PRECISION 

                                 123 |    8 |                  123 |    8 | INTEGER 

                             123.000 |    8 |                  123 |    8 | NUMERIC 

                      245678911.2345 |   14 |       245678911.2345 |    8 | NUMERIC 

                          2451375572 |   12 |           2451375572 |    8 | NUMERIC 

                          5555555555 |   12 |           5555555555 |    8 | BIGINT

 

 
We have to conclude that for large integers it is best to use BIGINT. And unless a very high 
precision is needed (more than 15 significant digits) or you plan to to calculations that will 
propagate the round-off errors associated with float types, it is better to use DOUBLE 
PRECISION than NUMERIC. 
 
To confirm, I did another small test by inserting 101060 records into two different tables, 
numeric_table, and double_table. The input values  were the “same” (doubles truncated at 15 
significant digits max), but the data-types were different (NUMERIC vs DOUBLE PRECISION). 
Indeed, NUMERIC takes a lot more space. 
 
 oid  |    table_schema    |       table_name        | row_estimate | total_bytes | 
index_bytes | toast_bytes | table_bytes |   total    |   index    |   toast    |   table  

-------+--------------------+-------------------------+--------------+-------------+----------

---+-------------+-------------+------------+------------+------------+------------ 

 22063 | public             | numeric_table           |       101060 |     6119424  | 
0 |        8192 |     6111232 | 5976 kB    | 0 bytes    | 8192 bytes | 5968 kB 

 22069 | public             | double_table            |       101060 |     3694592  | 
0 |             |     3694592 | 3608 kB    | 0 bytes    |            | 3608 kB 

  



 

Character DataTypes 
 

Oracle PostgreSQL C++ Java JDBC Description Used in 
AQMS 
Schema? 

CHAR CHAR char java.lang.String Types.CHAR Fixed length 
character string, 
zero-padded 

NO 

VARCHAR2  1 VARCHAR  2 char[] java.lang.String Types.VARCHAR Variable length 
character string 
(up to 256) 

YES 

LONG TEXT char[] java.lang.String Types.LONGVARCHAR Longer variable 
length string 

NO 

NCHAR ? char[]? java.lang.String Types.NCHAR Unicode fixed 
length 

NO 

NVARCHAR ? char[]? java.lang.String Types.NVARCHAR Unicode variable 
length 

NO 

Common Integer DataTypes 
 

Oracle 
 

PostgreSQL C++ Java JDBC Description Used in 
AQMS 
Schema? 

NUMBER(1,0)  3 BOOLEAN bool boolean Types.BIT True or False (1,0) YES 

NUMBER(3,0) none->SMALLINT char byte or Integer Types.TINYINT 1 byte int 
-128 to 127 

YES 

NUMBER(4-5,0) SMALLINT short short or Integer Types.SMALLINT 2 byte int 
-32768 to 32677 

YES 

NUMBER(5-10,0) INTEGER int int or Integer Types.INTEGER 4 byte int 
-2147483648 to 
+2147483647 

YES 

NUMBER(11-19,0) BIGINT long long or Long Types.BIGINT 8 byte int 
-9223372036854775
808 to 
+922337203685477
5807 

YES 

1 VARCHAR can be used as synonym 
2 Synonym for CHARACTER VARYING 
3 NUMBER(precision,scale)--> precision is number of significant digits, scale is mantissa, scale=0 is an 
integer. 123.56 = 1.2356 * 10^2  precision=5, scale=2, when scale is omitted it is 0 (i.e. integer). 



 

 SMALLSERIAL, 
SERIAL 
,BIGSERIAL 

short,in
t,long 

  Autoincrementing, > 
0 

NO 

 
 
PostgreSQL’s data type NUMERIC sounds as if it works the same as Oracle’s data type 
NUMBER, so why not just translate NUMBER(15,0) to NUMERIC(15,0), for example? Because 
according to the docs: However, calculations on numeric values are very slow compared to the 
integer types, or to the floating-point types described in the next section. 
 
Most primary keys are NUMBER(15,0) as the IDs of table rows. Those aren’t used for math so 
perhaps we could store them as NUMERIC(15,0) rather than a BIGINT (which is equivalent to 
NUMERIC(19,0)). A BIGINT takes 8 bytes of space, a NUMERIC(15,0) is ~2^53 significant 
digits, i.e. almost 7 bytes, + the one extra for the scale = also at least 8 bytes. According to the 
Oracle documentation, storing a NUMBER(15,0) also takes 8 bytes (9 bytes for a negative 
number). 

 

  



 
PostgreSQL Data Types 

 

 
C++ primitive types. 

 
 

  



# references: 

# 

# http://docs.oracle.com/cd/B19306_01/server.102/b14200/sql_elements001.htm 

# http://www.postgresql.org/docs/9.4/static/datatype.html 

# 

# Explanation of substitutions done below: 

# 

# -------------------------------------------------------------- 

# ORACLE DATATYPE/identifier     => PostgreSQL DATATYPE/identifier 

# -------------------------------------------------------------- 

# NUMBER(1-4, 0), number(1-4, 0) => SMALLINT -32768 to +32767 

# NUMBER(1-4,0), number(1-4,0)   => SMALLINT -32768 to +32767 

# NUMBER(5-9, 0), number(5-9, 0) => INTEGER  -2147483648 to +2147483647 

# NUMBER(5-9,0), number(5-9,0)   => INTEGER  -2147483648 to +2147483647 

# NUMBER(>9, 0), number(>9, 0)   => BIGINT   -9223372036854775808 to +9223372036854775807 

# NUMBER                         => NUMERIC  DOUBLE PRECISION 
# VARCHAR2, varchar2, VarChar2   => VARCHAR (=CHARACTER VARYING) 

# DATE                           => TIMESTAMP 

# DATE,                          => TIMESTAMP, 

# DATE$                          => TIMESTAMP 

# date                           => TIMESTAMP  

# SYSDATE                        => LOCALTIMESTAMP 

# FLOAT()                        => DOUBLE PRECISION 

# FLOAT                          => DOUBLE PRECISION  

# BLOB                           => BYTEA 

# cast (sys_extract_utc(systimestamp) as date) => CURRENT_TIMESTAMP AT TIME ZONE 'UTC' 

# cast (sys_extract_utc(systimestamp) as       => CURRENT_TIMESTAMP AT TIME ZONE 'UTC' 

# cast (sys_extract_utc(systimestamp)          => CURRENT_TIMESTAMP AT TIME ZONE 'UTC' 

# as date)                       => (remove, due to cast() wrapped to next line) 

#  date)                         => (remove, due to cast() wrapped to next line) 

#date                            => (remove, due to cast() wrapped to next line) 

# SYS_EXTRACT_UTC(SYSTIMESTAMP)  => CURRENT_TIMESTAMP AT TIME ZONE 'UTC' 

# create or replace public synonym => commented out (the equivalent in PostgreSQL is to 

explicitely  

#                                   set the search_path for each role (user) to include the 

schema  

#                                   names that need to be accessible) 

# grant or GRANT                 => commented out, don't do this in creation script 

# "                              => remove, double quotes are part of the identifier  

#                                   when used (i.e. table SYSTEM_STATUS would be 

"SYSTEM_STATUS") 

# ENABLE                         => remove, unknown by PostgreSQL 

# DISABLE                        => remove the whole line, unknown by PostgreSQL (cannot 

disable check constraint) 

# offset  (=a table column name) => i_offset, OFFSET is a reserved keyword in PostgreSQL  

#                                   (and in SQL 2008 standard) 

# 

http://www.postgresql.org/docs/9.4/static/sql-keywords-appendix.html 

# QB_SCHEDULE                    => use _QB_TIME instead 

# COORDINATES                    => use _LATLON instead 

# catseq.nextval                 => use nextval('catseq') instead 

# /                              => change to semi-colon 

# -------------------------------------------------------------- 

 

cd $ORA_SRC 

file_name=$1 

echo "Converting $file_name in $ORA_SRC and putting new file in $PG_DEST" 



 

grep -v "DISABLE" $file_name | sed -e "s:\NUMBER([1-4],\s*[0]):SMALLINT:"i \ 

     -e "s:NUMBER([1-4]):SMALLINT:"i \ 

     -e "s:\NUMBER([5-9],\s*[0]):INTEGER:"i \ 

     -e "s:NUMBER([5-9]):INTEGER:"i \ 

     -e "s:NUMBER([^0]\+,\s*[0]):BIGINT:"i \ 

     -e "s: NUMBER: NUMERIC  DOUBLE PRECISION:"i \ 
     -e "s:VARCHAR2:VARCHAR:"i \ 

     -e "s: DATE : TIMESTAMP :" \ 

     -e "s: DATE,: TIMESTAMP,:" \ 

     -e "s: DATE$: TIMESTAMP:" \ 

     -e "s: date : TIMESTAMP :" \ 

     -e "s:SYSDATE:LOCALTIMESTAMP:" \ 

     -e "s:FLOAT([^0]\+):DOUBLE PRECISION:" \ 

     -e "s:FLOAT:DOUBLE PRECISION:" \ 

     -e "s:BLOB:BYTEA:"i \ 

     -e "s:cast (sys_extract_utc(systimestamp) as date):CURRENT_TIMESTAMP AT TIME ZONE 'UTC':" 

\ 

     -e "s:cast (sys_extract_utc(systimestamp) as:CURRENT_TIMESTAMP AT TIME ZONE 'UTC':" \ 

     -e "s:cast (sys_extract_utc(systimestamp):CURRENT_TIMESTAMP AT TIME ZONE 'UTC':" \ 

     -e "s:as date)::" \ 

     -e "s:\sdate)::" \ 

     -e "s:^date)::" \ 

     -e "s:SYS_EXTRACT_UTC(SYSTIMESTAMP):CURRENT_TIMESTAMP AT TIME ZONE 'UTC':" \ 

     -e "s:create or replace public synonym:-- create or replace public synonym:" \ 

     -e "s:^grant:-- grant:"i \ 

     -e "s:\"::"g \ 

     -e "s:ENABLE::"gi \ 

     -e "s:offset:i_offset:"i \ 

     -e "s:QB_SCHEDULE:_qb_time:"i \ 

     -e "s:COORDINATES:_latlon:"i \ 

     -e "s:catseq.nextval:nextval('catseq'):" \ 

     -e "s:"^\/$":;:" \ 

> ${PG_DEST}/${file_name} 

 


