
PostgreSQL Operations and
Troubleshooting

http://www.percona.com/training/

http://www.percona.com/training/


Table Of Contents
About PostgreSQL HA PostgreSQL

PostgreSQL Internals Backups, Redundancy And Availability

Administration Patroni

Monitoring and Troubleshooting

© 2011 - 2023 Percona, Inc. 2 /
240



Postgresql Operations And Troubleshooting

Before You Start: Lab Setup

© 2011 - 2023 Percona, Inc. 3 /
240



Lab Setup
Each student will be provided with an AWS instance,
configured with a three node cluster using LXC.
Each container node uses CentOS 7 with both postgres
and pgbouncer preinstalled in each container.
You will have the ability to login and administrate each
node as you progress through the course.

© 2011 - 2023 Percona, Inc. 4 /
240



Network Layout
HOST
    A single Amazon cloud instance, login account is "student"

CONTAINERS
    pg1: 192.168.2.11
    pg2: 192.168.2.12
    pg3: 192.168.2.13

Each node, pg1, pg2, pg3 etc, is preconfigured with two
accounts:

ACCOUNT PASSWORD

root root
postgres postgres

© 2011 - 2023 Percona, Inc. 5 /
240



What You Need
SSH client (terminal session)
Private key "student.pem" to be accessed and used by
your SSH client
IP address cloud instance, to be provided by the
instructor

# Example LOGIN Session
ssh -i student.pem student@54.189.95.186

© 2011 - 2023 Percona, Inc. 6 /
240



About PG Containers
Once logged into the cloud instances, test if containers
are started:

PG1 (192.168.2.11)
PG2 (192.168.2.12)
PG3 (192.168.2.13)

for u in 1 2 3
do
    ping -c 1 pg$u
done

© 2011 - 2023 Percona, Inc. 7 /
240



About PG Containers, Cont'd
Housekeeping; update packages on each container:

# login and update each container ...
#   password: "root"
#
# EX: pg1
# CENTOS 8
ssh root@pg1

    dnf update -y
    dnf repolist
    updatedb
    systemctl start postgresql-15
    systemctl status postgresql-15
    netstat -tlnp
    exit

© 2011 - 2023 Percona, Inc. 8 /
240



About PG Containers, Cont'd
Postgres user login to each container:

# password: "postgres"
#
# EX: pg1
ssh postgres@pg1

#
psql

© 2011 - 2023 Percona, Inc. 9 /
240



Node Administration
As root:

systemctl [stop|status|start] [postgresql-15|pgbouncer]

systemctl [enable|disable] [postgresql-15|pgbouncer]

netstat -tlnp

© 2011 - 2023 Percona, Inc. 10 /
240



Miscellaneous
Both the postgres and pgbouncer are initialized at their default
configurations
one can su from postgres to root (PW is "root")

# as postgres
su - root

GNU Midnight Commander, "mc", Visual shell for Unix-like systems is
available
screen is installed on the HOST node but not installed in the
containers
environment variable PGDATA is already declared for postgres

# as postgres
echo $PGDATA

© 2011 - 2023 Percona, Inc. 11 /
240



Miscellaneous (cont'd)
update the PAGER environment variable to suit your
preference

# as postgres
echo "export PAGER=less -S" > $HOME/.pgsql_profile

ATTENTION: Disk space is shared by all 3 pg nodes

-bash-4.2$ df -h
Filesystem      Size  Used Avail Use% Mounted on
/dev/xvda1       20G  7.6G   12G  40% /
none            492K     0  492K   0% /dev
udev            473M     0  473M   0% /dev/tty
tmpfs           100K     0  100K   0% /dev/lxd
tmpfs           100K     0  100K   0% /dev/.lxd-mounts
tmpfs           488M  1.1M  487M   1% /dev/shm
tmpfs           488M  6.7M  481M   2% /run
tmpfs           488M     0  488M   0% /sys/fs/cgroup
tmpfs            98M     0   98M   0% /run/user/0
tmpfs            98M     0   98M   0% /run/user/26

© 2011 - 2023 Percona, Inc. 12 /
240



Postgresql Operations And Troubleshooting

Overview Of Postgresql

© 2011 - 2023 Percona, Inc. 13 /
240



About PostgreSQL
History of PostgreSQL

Ingres

Year 1973 - INGRES (INteractive GRaphics Retrieval System) - University of California at
Berkeley.
Year 1979 - Oracle Database first version
Early 1980’s - Ingres lost to Oracle that used SQL as a preferred query language.
Year 1985 - UC Berkeley INGRES research project officially ended.

Postgres

Year 1986 - Postgres introduced as Post-Ingres evolution. POSTQUEL query language until
1994
Year 1995 - Postgres95 with support for SQL.

PostgreSQL

Year 1996 - Renamed to PostgreSQL.
Year 1997 - PostgreSQL first version - PostgreSQL 6.0 released.

© 2011 - 2023 Percona, Inc. 14 /
240



PostgreSQL: Features
Portable

Written in C
Flexible across all the UNIX platforms, Windows, MacOS and others.
World’s most advanced open source database. Community driven.
ANSI/ISO Compliant SQL support.

Reliable

ACID Compliant
Supports Transactions
Uses Write Ahead Logging

Scalable

MVCC
Table Partitioning
Tablespaces
FDWs (Foreign Data Wrappers)
Sharding

© 2011 - 2023 Percona, Inc. 15 /
240



PostgreSQL: Advanced Features
Security

Host-Based Access Control
Object-Level and Row-Level Security
Logging and Auditing
Encryption using SSL

High Availability

Synchronous/Asynchronous Replication and Delayed Standby
Cascading Replication
Online Consistent Physical Backups and Logical Backups
PITR

Additional Features

Triggers and Functions/Stored Procedures
Custom Stored Procedural Languages like PL/pgSQL, PL/perl, PL/TCL, PL/php, PL/python, PL/java.
PostgreSQL Major Version Upgrade using pg_upgrade
Unlogged Tables
Materialized Views
Hot Standby - Slaves accept Reads

© 2011 - 2023 Percona, Inc. 16 /
240



PostgreSQL: ACID Compliance
Atomicity

Either everything should succeed in a transaction or nothing when something fails.
BEGIN …SQL1, SQL2, …SQLn…..COMMIT/ROLLBACK/END.

Consistency

Give me a consistent picture of the data based on Isolation Levels. Example: READ_COMMITTED
Query 1 : select count(*) from employee;

9:00 am : Records in employee table : 10000
9:10 am : Query 1 Started by User 1
9:11 am : 2 employee records deleted by User 2.
9:12 am : Query 1 that was started by User 1 Completed.

Result of Query 1 at 9:12 am would still be 10000. A Consistent image as how it was at 9:00 am.

Isolation

Prevent Concurrent data access through Locking.

Durability

Once the Data is committed, it must be safe.
Through WAL’s, fsync, synchronous_commit and replication.

© 2011 - 2023 Percona, Inc. 17 /
240



PostgreSQL: Terminology
PostgreSQL was designed in academia

Objects are defined in academic terms.
Terminology based on relational calculus/algebra

Industry Term PostgreSQL Term
Table/Index Relation

Row Tuple

Column Attribute

Data Block Page (when data block is on disk)

Page Buffer (when data block is in memory)

© 2011 - 2023 Percona, Inc. 18 /
240



PostgreSQL: References
Portal: https://www.postgresql.org/
References And Resources

https://www.postgresql.org/docs/current/index.html
https://www.postgresql.org/docs/current/bookindex.html
https://www.postgresql.org/docs/online-resources/
https://www.percona.com/blog/

© 2011 - 2023 Percona, Inc. 19 /
240

https://www.postgresql.org/
https://www.postgresql.org/docs/current/index.html
https://www.postgresql.org/docs/current/bookindex.html
https://www.postgresql.org/docs/online-resources/
https://www.percona.com/blog/


Postgresql Operations And Troubleshooting

Postgresql Internals

© 2011 - 2023 Percona, Inc. 20 /
240



PostgreSQL Cluster Diagram

© 2011 - 2023 Percona, Inc. 21 /
240



PostgreSQL Database & Schema
PostgreSQL Database contains one or more schemas. Default - public schema.

A Schema groups objects together. An example : A folder/directory that contains tables, index and other
objects as files.

You can always have more than 1 Database with one or more schemas in it.
A Schema in PostgreSQL groups objects of a certain application logic together. Helps create multiple
objects with the same name in one Database.

For example : In a database named percona, a table with tablename employee can exist in both scott
and tiger schemas.

 Database  : percona
 Schema(s) : scott & tiger
 Tables    : scott.employee & tiger.employee

A Fully Qualified Table Name : schema_name.table_name must be used to query a particular table in a
schema.

 select * from scott.employee where salary > 10000;

© 2011 - 2023 Percona, Inc. 22 /
240



Postgresql Architecture

© 2011 - 2023 Percona, Inc. 23 /
240



PostgreSQL Server
Multi-Process Architecture.

Postmaster (Parent PostgreSQL Process)
Backend Utility Processes
Per-Connection backend processes
Every Connection is a Process.
Whereas each connection is a thread in MySQL - Multi-threaded.

© 2011 - 2023 Percona, Inc. 24 /
240



Background Utility Processes
Start your PostgreSQL server:

systemctl start postgresql-15

$ ps aux|grep postgres:
postgres   771  0.0  0.1 352712  1388 ?        Ss   19:21   0:00 postgres: logger
postgres   772  0.0  0.3 501012  3892 ?        Ss   19:21   0:00 postgres: checkpointer
postgres   773  0.0  0.1 501024  1724 ?        Ss   19:21   0:00 postgres: background writer
postgres   775  0.0  0.5 500884  5740 ?        Ss   19:21   0:00 postgres: walwriter
postgres   776  0.0  0.2 502476  2800 ?        Ss   19:21   0:00 postgres: autovacuum launcher
postgres   777  0.0  0.1 502452  1896 ?        Ss   19:21   0:00 postgres: logical replication lau

© 2011 - 2023 Percona, Inc. 25 /
240



systemctl status postgresql-15

[root@pg1 ~]# systemctl status postgresql-15
● postgresql-15.service - PostgreSQL 15 database server
   Loaded: loaded (/usr/lib/systemd/system/postgresql-15.service; enabled; vendor preset: disabled
  Drop-In: /run/systemd/system/postgresql-15.service.d
           └─zzz-lxc-service.conf
   Active: active (running) since Fri 2023-04-14 19:21:55 UTC; 1h 8min ago
     Docs: https://www.postgresql.org/docs/15/static/
  Process: 759 ExecStartPre=/usr/pgsql-15/bin/postgresql-15-check-db-dir ${PGDATA} (code=exited, s
 Main PID: 766 (postmaster)
    Tasks: 7 (limit: 6052)
   Memory: 29.6M
   CGroup: /system.slice/postgresql-15.service
           ├─766 /usr/pgsql-15/bin/postmaster -D /var/lib/pgsql/15/data/
           ├─771 postgres: logger
           ├─772 postgres: checkpointer
           ├─773 postgres: background writer
           ├─775 postgres: walwriter
           ├─776 postgres: autovacuum launcher
           └─777 postgres: logical replication launcher

Apr 14 19:21:51 pg1 systemd[1]: Starting PostgreSQL 15 database server...
Apr 14 19:21:55 pg1 postmaster[766]: 2023-04-14 19:21:55.147 UTC [766] LOG:  redirecting log outpu
Apr 14 19:21:55 pg1 postmaster[766]: 2023-04-14 19:21:55.147 UTC [766] HINT:  Future log output wi
Apr 14 19:21:55 pg1 systemd[1]: Started PostgreSQL 15 database server.

© 2011 - 2023 Percona, Inc. 26 /
240



Process Components
Postmaster :

Master database control process.
Responsible for startup & shutdown.
Spawns necessary backend processes.

Postgres backend :

Dedicated, per-connection server process.
Responsible for fetching data from disk and communicating with the client.

© 2011 - 2023 Percona, Inc. 27 /
240



Utility Processes
BGWriter :

Background Writer
Writes/Flushes dirty data blocks to disk.

WAL Writer :

Writes WAL Buffers to Disk.
WAL Buffers are written to WALs(Write-Ahead Logs) on the disk.

Autovacuum Launcher:

Starts Autovacuum worker processes to start a vacuum and analyze job in the
backend.

Checkpointer :

Perform a CHECKPOINT that ensures that all the changes are flushed to disk.
Depends on configuration parameters.

© 2011 - 2023 Percona, Inc. 28 /
240



Utility Processes
Archiver :

Archives Write-Ahead-Logs.
Used for High Availability, Backups and PITR (point-in-time-recovery).

Logger :

Logs messages, events, error to syslog or log files.
Errors, slow running queries, warnings,..etc. are written to log files by this process.

Stats Collector :

Collects statistics of relations (tables).
Needed by autovacuum launcher process.

© 2011 - 2023 Percona, Inc. 29 /
240



Utility Processes
WAL Sender :

Sends WALs to Replica(s).
One WAL Sender for each Slave connected for Replication.

WAL Receiver :

Started on a Slave(aka Standby or Replica) in Replication.
Streams WALs from Master.

bgworker :

PostgreSQL is extensible to run user-supplied code in separate processes that are
monitored by Postgres.
Such processes can access PostgreSQL's shared memory area.
Connect as a client using libpq.

bgworker: logical replication launcher

Logical Replication between a Publisher and a Subscriber.

© 2011 - 2023 Percona, Inc. 30 /
240



Memory Components
Shared Buffers

PostgreSQL Database Memory Area.
Shared by all the Databases in the Cluster.
Pages are fetched from Disk to Shared Buffers during Reads/Writes.
Modified Buffers are also called as Dirty Buffers.
Parameter : shared_buffers sets the amount of RAM allocated to Shared Buffers.
Uses LRU Algorithm to flush less frequently used buffers.
Dirty Buffers written to disk after a CHECKPOINT.

WAL Buffers :

Stores Write Ahead Log Records.
Contains the change vector for a buffer being modified.
WAL Buffers written to WAL Segments (On sisk).

work_mem :

Memory used by each Query for internal sort operations such as ORDER BY and DISTINCT.
Postgres writes to disk (temp files) if this memory is not sufficient.

© 2011 - 2023 Percona, Inc. 31 /
240



Memory Components
maintenance_work_mem

Amount of RAM used by VACUUM, CREATE INDEX, REINDEX like maintenance
operations.
Setting this to a bigger value can help in faster database restore.

© 2011 - 2023 Percona, Inc. 32 /
240



© 2011 - 2023 Percona, Inc. 33 /
240



DataCluster: Directory Tree

© 2011 - 2023 Percona, Inc. 34 /
240



DataCluster: Files<->Tables, Indexes

© 2011 - 2023 Percona, Inc. 35 /
240



Postgresql Is Not Direct IO
When it needs a Page(Data Block), it searches it’s own memory aka Shared Buffers.
If not found in shared buffers, it will request the OS for the same block.
The OS fetches the block from the Disk and gives it to Postgres, if the block is not found in
OS Cache.
More important to Caching when Database and Active Data set cannot fit in memory.

© 2011 - 2023 Percona, Inc. 36 /
240



Disk Components
Data Directory

In MySQL, Data Directory is created when you initialize your MySQL Instance.
Initialized using initdb in PostgreSQL. Similar to mysqld --initialize.
Contains Write-Ahead-Logs, Log Files, Databases, Objects and other configuration
files.
You can move WAL’s and Logs to different directories using symlinks and parameters.
Environment Variable : $PGDATA

Configuration files in the data directory

postgresql.conf
pg_ident.conf
pg_hba.conf
postgresql.auto.conf
recovery.conf # deprecated as of version 12

© 2011 - 2023 Percona, Inc. 37 /
240



Configuration Files In The Data
Directory

PG_VERSION

Version String of the Database Cluster.

pg_hba.conf

Host-Based access control file (built-in firewall).

pg_ident.conf

ident-based access file for OS User to DB User Mapping.

postgresql.conf

Primary Configuration File for the Database.

postmaster.opts

Contains the options used to start the PostgreSQL Instance.

postmaster.pid

The parent process id or the Postmaster process id.

© 2011 - 2023 Percona, Inc. 38 /
240



.conf vs auto.conf
postgresql.conf

Configuration file for PostgreSQL similar to my.cnf for MySQL.
Contains parameters required to run a PostgreSQL Instance.
Parameters are set to their default values unless modified.
Located in the data directory or /etc. Changes with distribution and is modifiable.

postgresql.auto.conf

PostgreSQL gives Oracle like compatibility to modify parameters using ALTER
SYSTEM.
Any parameter modified using ALTER SYSTEM is written to this file for persistence
(upon restart of postgres).
This is last configuration file read by PostgreSQL, when started. Empty by default.
Always located in the data directory.

© 2011 - 2023 Percona, Inc. 39 /
240



View And Modify Parameters
Use show to view a value of a parameter

$ psql -c "show work_mem"

To see all the settings, use show all

$ psql -c "show all"

Use ALTER SYSTEM to modify a parameter

$ psql -c "ALTER SYSTEM SET archive_mode TO ON"

Use the reload function to put changes into effect for parameters not needing RESTART

$ psql -c "select pg_reload_conf()"
# OR
$ pg_ctl -D $PGDATA reload

© 2011 - 2023 Percona, Inc. 40 /
240



Base Directory & Datafiles On Disk
Base Directory

Contains Sub-Directories for every database you create.
Every Database Sub-Directory contains files for every Relation/Object created in the database.

Datafiles

Base Directory contains Relations.
Datafiles are the files for Table Relations in the base directory.
Relations stored on Disk as 1GB segments.
Each 1GB Datafile is made up of several 8KB (modifiable) Pages that are allocated as needed.
Segments are automatically added unlike Oracle.

Indexes

Similar properties as Relations/Tables.
Base Directory contains Indexes associated with the Tables.

Tablespaces

A tablespace allows superusers to define an alternative location on the file system where the data
files containing database objects (such as tables and indexes) can reside.

Reference: https://www.postgresql.org/docs/current/storage-file-layout.html

© 2011 - 2023 Percona, Inc. 41 /
240

https://www.postgresql.org/docs/current/storage-file-layout.html


Base Directory
1. Create a database with name as : percona

$ psql -c "CREATE DATABASE percona"

2. Get the datid for the database and see if it exists in the base directory

$ psql -c "select datid, datname from pg_stat_database where datname = 'percona'"

In the following output, you should see that a directory with name as datid of database is
created under the base directory.

$ psql -c "CREATE DATABASE percona"
CREATE DATABASE
$ psql -c "select datid, datname from pg_stat_database where datname = 'percona'"
 datid | datname
-------+---------
 16385 | percona
(1 row)
$ ls -ld $PGDATA/base/16385
drwx------. 2 postgres postgres 8192 Dec 13 13:38 /var/lib/pgsql/15/data/base/16385

© 2011 - 2023 Percona, Inc. 42 /
240



Base Directory (Schema And Relations)
1. Create a schema named : scott

$ psql -d percona -c "CREATE SCHEMA scott"

2. Create a table named : employee in schema : scott

$ psql -d percona -c "CREATE TABLE scott.employee(id int PRIMARY KEY, name varchar(20))"

3. Locate the file created for table : scott.employee in the base directory

$ psql -d percona -c "select pg_relation_filepath('scott.employee')"

© 2011 - 2023 Percona, Inc. 43 /
240



Base Directory (Schema And Relations)
In the following output, we see that the table : scott.employee (oid = 16387) is created
inside the database : percona (datid = 16385)

$ psql -d percona -c "CREATE SCHEMA scott"
CREATE SCHEMA
$ psql -d percona -c "CREATE TABLE scott.employee(id int PRIMARY KEY, name varchar(20))"
CREATE TABLE
$ psql -d percona -c "select pg_relation_filepath('scott.employee')"
 pg_relation_filepath
----------------------
 base/16385/16387
(1 row)
$ ls -larth $PGDATA/base/16385/16387
-rw-------. 1 postgres postgres 0 Dec 13 13:54 /var/lib/pgsql/15/data/base/16385/16387

Also observe that the size of file (table : scott.employee) is 0 bytes.

© 2011 - 2023 Percona, Inc. 44 /
240



Base Directory (Block Size)
Check the size of the table in the OS and value of parameter : block_size

$ psql -c "show block_size"

INSERT a record in the table and see the size of the file

$ psql -d percona -c "INSERT INTO scott.employee VALUES (1, 'frankfurt')"
$ ls -larth $PGDATA/base/16385/16387

INSERT more records and check the size difference

$ psql -d percona -c "INSERT INTO scott.employee VALUES (generate_series(2,1000), 'junk')"
$ ls -larth $PGDATA/base/16385/16387

© 2011 - 2023 Percona, Inc. 45 /
240



Base Directory (Block Size)
In the following output, we see that -

the table size is increasing in the multiples of block_size (8 KB here)
the table size displayed through \dt+ is slightly higher because that includes the primary key index

$ psql -c "show block_size"
 block_size
------------
 8192

$ psql -d percona -c "INSERT INTO scott.employee VALUES (1, 'frankfurt')"
INSERT 0 1
$ ls -larth $PGDATA/base/16385/16387
-rw-------. 1 postgres postgres 8.0K Dec 13 14:10 /var/lib/pgsql/15/data/base/16385/16387

$ psql -d percona -c "INSERT INTO scott.employee VALUES (generate_series(2,1000), 'junk')"
INSERT 0 999
$ ls -larth $PGDATA/base/16385/16387
-rw-------. 1 postgres postgres 48K Dec 13 14:11 /var/lib/pgsql/15/data/base/16385/16387

-- Table size including Indexes

$ psql -d percona -c "\dt+ scott.employee"
                     List of relations
 Schema |   Name   | Type  |  Owner   | Size  | Description
--------+----------+-------+----------+-------+-------------
 scott  | employee | table | postgres | 72 kB |
(1 row)

© 2011 - 2023 Percona, Inc. 46 /
240



Write Ahead Logs (WAL)
WALs

When Client commits a transaction, it is written to WAL Segments (on Disk) before a
success message is sent to Client.
PostgreSQL WALS vs Oracle REDO Logs.
Written by WAL Writer background process.
Ensures durability when fsync and synchronous_commit set to ON and
commit_delay set to 0.
Used during Crash Recovery.
Size of each WAL is 16MB. Modifiable during Initialization.
WALs are generated in pg_wal directory
WAL directory exits in data directory by default. Can be modified using Symlinks.
WALs are deleted depending on the parameters : wal_keep_size,
max_slot_wal_keep_size, checkpoint_timeout, stray replication slots will also
result in WALs piling up

© 2011 - 2023 Percona, Inc. 47 /
240



Archived Logs And Why ?
Archived WALs

WALs in pg_wal are gone after a certain threshold. Archiving ensures recoverability
and helps a Slave catch-up during replication lag.
Archiving in PostgreSQL can be enabled through parameters : archive_mode and
archive_command.
Ships WALs to safe locations like a Backup Server or Cloud Storage like S3 or Object
Store.
WALs are archived by archiver background process.
archive_command can be set with the appropriate shell command to archive WALs.

© 2011 - 2023 Percona, Inc. 48 /
240



Steps To Enable Archiving
Log in to your PostgreSQL Instance and modify parameters : listen_addresses,
archive_mode, archive_command

-- Create the archive directory.
$ mkdir ~/archive

-- Modify the PostgreSQL parameters.
$ psql -c "ALTER SYSTEM SET archive_mode TO 'ON'"
$ psql -c "ALTER SYSTEM SET archive_command TO 'cp %p /var/lib/pgsql/archive/%f'"

-- Restart PostgreSQL to get these parameters into effect.
$ pg_ctl -D $PGDATA restart -mf

© 2011 - 2023 Percona, Inc. 49 /
240



Switch A Wal
Switch a WAL using the following command

$ psql -c "select pg_switch_wal()"

Check if the previous WAL has been safely archived.

-- List all the WALs
$ ls -l $PGDATA/pg_wal
-- List all the WALs that have been archived.
$ ls -l /var/lib/pgsql/archive

We should now see the previously generated WAL segment archived.

archive_command can take any shell command/script that can ship a WAL to any
destination.

© 2011 - 2023 Percona, Inc. 50 /
240



What If Archiving Failed ?
If archiving has been enabled and the archive_command failed,

the WAL segment for which the archiving failed will not be removed from pg_wal or
pg_xlog
an empty wal_file_name.ready file is generated in the archive_status directory
the background process archiver attempts to archive the failed WAL segment until it
succeeds.
there is a chance that the pg_wal directory can get filled and doesn't allow any more
connections to database.

-- When archiving is succeeded
$ ls -l $PGDATA/pg_wal/archive_status
-rw-------. 1 postgres postgres  0 Dec 13 19:31 000000010000000000000002.done
-- When archiving is failed
$ ls -l $PGDATA/pg_wal/archive_status
-rw-------. 1 postgres postgres 0 Dec 13 19:32 000000010000000000000003.ready

© 2011 - 2023 Percona, Inc. 51 /
240



PostgreSQL Operations And Troubleshooting

Administration Basics

© 2011 - 2023 Percona, Inc. 52 /
240



Installation
Community: https://www.postgresql.org/download/linux/

CENTOS 8:

dnf search postgres*contrib
dnf install -y postgresql15-contrib

Ubuntu:

apt search postgres | grep -E '^postgres' | less
apt install -y postgresql-15

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/download/linux/

53 /
240

https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/


Installation Cont'd
Remove pre-existing datacluster

CENTOS:

# check status of services
ssh root@pg[123]
systemctl status postgresql-15

# stop services
systemctl stop postgresql-15
netstat -tlnp

# remove pre-existing datacluster
su - postgres
rm -rf $PGDATA
exit

© 2011 - 2023 Percona, Inc. 54 /
240



Installation Cont'd
Initialize datacluster

CENTOS:

/usr/pgsql-15/bin/postgresql-15-setup initdb

Ubuntu: (automatic, no intervention required)

Start/Stop/Reload/Status

CENTOS:

systemctl start|stop|status postgresql-15

Ubuntu:

systemctl start|stop|status postgresql@15-main

Configuration Edits

CENTOS:

systemctl edit postgresql-15 [--full]
vi /var/lib/pgsql/15/data/[pg_hba.conf|postgresql.conf]

Ubuntu:

systemctl edit postgresql@15-main [--full]
pg_conftool --help
pg_lsclusters
pg_conftool 12 main [pg_hba.conf|postgresql.conf] edit

© 2011 - 2023 Percona, Inc. 55 /
240



Configuration: pg_hba.conf
Example of host based authentication rules:

# PostgreSQL Client Authentication Configuration File
# ===================================================
#
# TYPE  DATABASE        USER            ADDRESS                 METHOD
local   all             postgres                                peer
local   replication     all                                     peer

# host connections:
host    all             all             0.0.0.0/0               md5
host    all             all             ::0/0                   md5

# host connections, replication:
host    replication     all             0.0.0.0/0               md5
host    replication     all             ::0/0                   md5

© 2011 - 2023 Percona, Inc. 56 /
240



Configuration: postgresql.conf
Example postgres runtime parameters:

 listen_addresses = '*'
#listen_addresses = 'localhost'         # what IP address(es) to listen on;

 logging_collector = on
 log_filename = 'postgresql-%a.log'
 log_truncate_on_rotation = on
 log_rotation_size = 0

© 2011 - 2023 Percona, Inc. 57 /
240



Configuration: Initial Tuning
Minimal Settings For A Newly Initialized Datacluster

shared_buffers = 128MB                    # assign RAM between 1/4-1/3
work_mem = 4MB                            # latest industry settings put it typically at 10MB

maintenance_work_mem = 64MB               # depends upon loading of number autovacuum workers etc
                                          #     and DDL operations i.e. CREATE INDEX

fsync = on                                # except for setting to OFF for bulk uploads leave it ON
effective_cache_size = 4GB                # assign max 75% available RAM, can be tricky

autovacuum_max_workers = 3                # depends on amount of load it causes
                                          #     and number of CPUs available

Based Upon Hardware Resources i.e. CPU, RAM

© 2011 - 2023 Percona, Inc. 58 /
240



About MVCC, VACUUM And ANALYZE
MVCC : Multi-Version Concurrency Control.
Maintains Data Consistency Internally.
Prevents transactions from viewing inconsistent data.
Readers do not block Writers and Writers do not block Readers.
MVCC controls which tuples can be visible to transactions via Versions.
Hidden Column xmin that has the transaction ID for every row.
UNDO is not maintained in a Separate UNDO Segment. UNDO is stored as Older Versions
within the same Table.
Every Tuple has hidden columns => xmin and xmax that records the minimum and
maximum transaction ids that are permitted to see the row.
xmin can be interpreted as the lowest transaction ID that can see this column.
Just like SELECT statements executing WHERE xmin <= txid_current() AND (xmax = 0 OR
txid_current() < xmax)
Dead rows are the rows that no active or future transaction would see.
Rows that got deleted would get their xmax with the txid that deleted them.

© 2011 - 2023 Percona, Inc. 59 /
240



VACUUM: Dead Tuples
Due to continuous transactions in the databases and the number of dead rows, there
exists a lot of space that can be re-used by future transactions.

Tuples that are deleted or updated generate dead tuples that are not physically deleted.

See view => pg_stat_user_tables to check the number of dead tuples

VACUUM in PostgreSQL would clear off the dead tuples and mark it to free space map so
that the future transactions can re-use the space.

VACUUM percona.employee;

VACUUM FULL in PostgreSQL would rebuild the entire Table with explicit Locks, releasing
the space to File System. Similar to ALTER TABLE in MySQL.

VACUUM FULL percona.employee;

Autovacuum in PostgreSQL automatically runs VACUUM on tables depending on the
following parameters.

autovacuum_vacuum_scale_factor and autovacuum_vacuum_threshold.

© 2011 - 2023 Percona, Inc. 60 /
240



VACUUM: ANALYZE
ANALYZE colects statistics about the contents of tables in the database, and stores the
results in the system catalogs.

The autovacuum daemon, takes care of automatic analyzing of tables when they are first
loaded with data.

Accurate statistics will help the planner to choose the most appropriate query plan, and
thereby improve the speed of query processing.

ANALYZE percona.employee;

Autovacuum Launcher Process runs an Analyze on a Table depending on the following
parameters

autovacuum_analyze_scale_factor and autovacuum_analyze_threshold.

© 2011 - 2023 Percona, Inc. 61 /
240



Table Attributes: Storage Parameters
fillfactor (integer)
toast_tuple_target (integer)
parallel_workers (integer)
autovacuum_enabled, toast.autovacuum_enabled (boolean)
vacuum_index_cleanup, toast.vacuum_index_cleanup (boolean)
vacuum_truncate, toast.vacuum_truncate (boolean)
autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)
autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor (float4)
autovacuum_analyze_threshold (integer)
autovacuum_analyze_scale_factor (float4)
autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay (floating point)
autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit (integer)
autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)
autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)
autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)
autovacuum_multixact_freeze_min_age, toast.autovacuum_multixact_freeze_min_age (integer)
autovacuum_multixact_freeze_max_age, toast.autovacuum_multixact_freeze_max_age (integer)
autovacuum_multixact_freeze_table_age, toast.autovacuum_multixact_freeze_table_age (integer)
log_autovacuum_min_duration, toast.log_autovacuum_min_duration (integer)
user_catalog_table (boolean)

Reference:
CREATE TABLE: https://www.postgresql.org/docs/current/sql-createtable.html
ALTER TABLE: https://www.postgresql.org/docs/current/sql-altertable.html
BLOG: https://www.percona.com/blog/

© 2011 - 2023 Percona, Inc. 62 /
240

https://www.postgresql.org/docs/current/sql-createtable.html
https://www.postgresql.org/docs/current/sql-altertable.html
https://www.percona.com/blog/


Administration: ROLES
About

PostgreSQL manages database access permissions using the concept of roles. A role can be
thought of as either a database user, or a group of database users, depending on how the role is
set up. Roles can own database objects (for example, tables and functions) and can assign
privileges on those objects to other roles to control who has access to which objects.
Furthermore, it is possible to grant membership in a role to another role, thus allowing the
member role to use privileges assigned to another role.

The concept of roles subsumes the concepts of “users” and “groups”. In PostgreSQL versions
before 8.1, users and groups were distinct kinds of entities, but now there are only roles. Any
role can act as a user, a group, or both.

© 2011 - 2023 Percona, Inc. 63 /
240



ROLES: Commands
SQL

CREATE ROLE
DROP ROLE
ALTER ROLE

Command Line Interface
createuser
dropuser

© 2011 - 2023 Percona, Inc. 64 /
240



CREATE ROLE
Command: CREATE ROLE Description: define a new database role Syntax:

CREATE ROLE name [ [ WITH ] option [ ... ] ]

where option can be:

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD _password_ | PASSWORD NULL
    | VALID UNTIL _timestamp_
    | IN ROLE role_name [, ...]
    | IN GROUP role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN role_name [, ...]
    | USER role_name [, ...]
    | SYSID uid

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/15/sql-createrole.html

65 /
240

https://www.postgresql.org/docs/15/sql-createrole.html


DROP ROLE
Command: DROP ROLE Description: remove a database role Syntax:

DROP ROLE [ IF EXISTS ] name [, ...]

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/15/sql-droprole.html

66 /
240

https://www.postgresql.org/docs/15/sql-droprole.html


ALTER ROLE
Command: ALTER ROLE Description: change a database role Syntax:

ALTER ROLE role_specification [ WITH ] option [ ... ]

where option can be:

      SUPERUSER | NOSUPERUSER
    | CREATEDB | NOCREATEDB
    | CREATEROLE | NOCREATEROLE
    | INHERIT | NOINHERIT
    | LOGIN | NOLOGIN
    | REPLICATION | NOREPLICATION
    | BYPASSRLS | NOBYPASSRLS
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED ] PASSWORD 'password' | PASSWORD NULL
    | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ]
    SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ]
    SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ]
    RESET configuration_parameter
ALTER ROLE { role_specification | ALL } [ IN DATABASE database_name ]
    RESET ALL

where role_specification can be:

    role_name
  | CURRENT_USER
  | SESSION_USER

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/15/sql-alterrole.html

67 /
240

https://www.postgresql.org/docs/15/sql-alterrole.html


CLI: createuser
createuser creates a new PostgreSQL role.

Usage:
  createuser [OPTION]... [ROLENAME]

Options:
  -c, --connection-limit=N  connection limit for role (default: no limit)
  -d, --createdb            role can create new databases
  -D, --no-createdb         role cannot create databases (default)
  -e, --echo                show the commands being sent to the server
  -g, --role=ROLE           new role will be a member of this role
  -i, --inherit             role inherits privileges of roles it is a
                            member of (default)
  -I, --no-inherit          role does not inherit privileges
  -l, --login               role can login (default)
  -L, --no-login            role cannot login
  -P, --pwprompt            assign a password to new role
  -r, --createrole          role can create new roles
  -R, --no-createrole       role cannot create roles (default)
  -s, --superuser           role will be superuser
  -S, --no-superuser        role will not be superuser (default)
  -V, --version             output version information, then exit
  --interactive             prompt for missing role name and attributes rather
                            than using defaults
  --replication             role can initiate replication
  --no-replication          role cannot initiate replication
  -?, --help                show this help, then exit

Connection options:
  -h, --host=HOSTNAME       database server host or socket directory
  -p, --port=PORT           database server port
  -U, --username=USERNAME   user name to connect as (not the one to create)
  -w, --no-password         never prompt for password
  -W, --password            force password prompt

© 2011 - 2023 Percona, Inc. 68 /
240



CLI: dropuser
dropuser removes a PostgreSQL role.

Usage:
  dropuser [OPTION]... [ROLENAME]

Options:
  -e, --echo                show the commands being sent to the server
  -i, --interactive         prompt before deleting anything, and prompt for
                            role name if not specified
  -V, --version             output version information, then exit
  --if-exists               don't report error if user doesn't exist
  -?, --help                show this help, then exit

Connection options:
  -h, --host=HOSTNAME       database server host or socket directory
  -p, --port=PORT           database server port
  -U, --username=USERNAME   user name to connect as (not the one to drop)
  -w, --no-password         never prompt for password
  -W, --password            force password prompt

© 2011 - 2023 Percona, Inc. 69 /
240



Examples
Create a superuser called "root" that is able login and has a password 'apples'

create role root with login superuser password 'apples';

Create role "dba" that has permission to create databases but cannot login.

create role dba with createdb;

Create role "joe" and assign him as member to "dba" therefore giving him the ability to
create new databases.

create role joe with login password 'smile' in role dba;

Create a role called "jane" with a password of 'apples', the account will expire at the end of
the year 2023.

create role jane with login password 'koolaid' valid until '2023-12-31';

© 2011 - 2023 Percona, Inc. 70 /
240



Assigning Users Roles As Members
When we create a role, we are essentially creating a permission “map” - since permissions
can be assigned to a role, and users can be members of a role, we can use roles to
manage groups of permissions.
Since permissions are assigned to roles (and not directly to users) we can manage entire
groups of users simply by managing a role.
For example, to take away SUPERUSER access from a 'dba' role, we can just issue a 'ALTER
ROLE dba with NOSUPERUSER'
Similarly, NOLOGIN, NOCREATEDB, NOSUPERUSER, NOCREATEROLE, and NOINHERIT
clauses can be used to remove access from users.
By removing access from a role, we effectively remove access from all users that inherit
from that role.
Once a role has been created, the 'GRANT role TO user' and 'REVOKE role FROM user'
statements may be used to grant and revoke membership from roles.
A role can also be granted permissions to manage other roles: GRANT role to user WITH
ADMIN OPTION

© 2011 - 2023 Percona, Inc. 71 /
240



Understanding Role Access
A user can be a member of more than one role.
The 'INHERIT' property of an account allows explicitly gains access to all privileges it would get for all
roles it is a member of.
When INHERIT is not enabled, a user can change his/her current role using the 'SET ROLE' statement.
After SET ROLE, permissions checking for SQL commands is carried out as though the named role were
the one that had logged in originally.
Inheritance does not apply to the special role attributes set by CREATE ROLE and ALTER ROLE. For
example, being a member of a role with CREATEDB privilege does not immediately grant the ability to
create databases, even if INHERIT is set; it would be necessary to become that role via SET ROLE before
creating a database.
The RESET ROLE or SET ROLE NONE statements returns the role to the default.
If a users membership is revoked from a role that they have 'set' themselves to (select current_user shows
that role) then that user will retain access to the role until they do a 'reset role' or disconnect.
The SESSION keyword causes the change in role to apply to the current session only.
The LOCAL keyword causes the change in role to apply only to the current transaction.
You can determine your current session user and current role using the following statement: SELECT
SESSION_USER, CURRENT_USER;
You can determine the rights you have on a database objects using the '\dp' meta-command.
You can obtain a list of roles using the '\du' meta command.
You can obtain a list of database access permissions from the pg_database table.
You can obtain a list of roles from pg_roles.

© 2011 - 2023 Percona, Inc. 72 /
240



Listing Roles
db01=# \dgS

db01=# \dgS
                                                     List of roles
         Role name         |                         Attributes            |           Member of
---------------------------+-----------------------------------------------+-----------------------------
 dba                       | Create DB, Cannot login                       | {}
 jane                      | Password valid until 2023-12-31 00:00:00-08   | {}
 joe                       |                                               | {dba}
 pg_execute_server_program | Cannot login                                  | {}
 pg_monitor                | Cannot login                                  | {pg_read_all_settings,
                           |                                               |  pg_read_all_stats,
                           |                                               |  pg_stat_scan_tables}
 pg_read_all_settings      | Cannot login                                  | {}
 pg_read_all_stats         | Cannot login                                  | {}
 pg_read_server_files      | Cannot login                                  | {}
 pg_signal_backend         | Cannot login                                  | {}
 pg_stat_scan_tables       | Cannot login                                  | {}
 pg_write_server_files     | Cannot login                                  | {}
 postgres                  | Superuser, Create role,                       |
                           | Create DB, Replication, Bypass RLS            | {}
 root                      | Superuser                                     | {}

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/default-roles.html

73 /
240

https://www.postgresql.org/docs/current/default-roles.html


Listing Roles Cont'd
db01=# \d pg_roles

                         View "pg_catalog.pg_roles"
     Column     |           Type           | Collation | Nullable | Default
----------------+--------------------------+-----------+----------+---------
 rolname        | name                     |           |          |
 rolsuper       | boolean                  |           |          |
 rolinherit     | boolean                  |           |          |
 rolcreaterole  | boolean                  |           |          |
 rolcreatedb    | boolean                  |           |          |
 rolcanlogin    | boolean                  |           |          |
 rolreplication | boolean                  |           |          |
 rolconnlimit   | integer                  |           |          |
 rolpassword    | text                     |           |          |
 rolvaliduntil  | timestamp with time zone |           |          |
 rolbypassrls   | boolean                  |           |          |
 rolconfig      | text[]                   | C         |          |
 oid            | oid                      |           |          |

db01=# \d pg_shadow

                       View "pg_catalog.pg_shadow"
    Column    |           Type           | Collation | Nullable | Default
--------------+--------------------------+-----------+----------+---------
 usename      | name                     |           |          |
 usesysid     | oid                      |           |          |
 usecreatedb  | boolean                  |           |          |
 usesuper     | boolean                  |           |          |
 userepl      | boolean                  |           |          |
 usebypassrls | boolean                  |           |          |
 passwd       | text                     | C         |          |
 valuntil     | timestamp with time zone |           |          |
 useconfig    | text[]                   | C         |          |

© 2011 - 2023 Percona, Inc. 74 /
240



Caveat
passwords (AWS and similar cloud provider environments)

cannot be extracted from pg_shadow
cannot be dumped TIP: pg_dumpall --no-role-passwords

© 2011 - 2023 Percona, Inc. 75 /
240



Additional References For Roles
https://www.postgresql.org/docs/current/view-pg-user.html
https://www.postgresql.org/docs/current/view-pg-roles.html
https://www.postgresql.org/docs/current/catalog-pg-user-mapping.html
https://www.postgresql.org/docs/current/catalog-pg-db-role-setting.html
https://www.postgresql.org/docs/current/infoschema-applicable-roles.html
https://www.postgresql.org/docs/current/infoschema-administrable-role-
authorizations.html

© 2011 - 2023 Percona, Inc. 76 /
240

https://www.postgresql.org/docs/current/view-pg-user.html
https://www.postgresql.org/docs/current/view-pg-roles.html
https://www.postgresql.org/docs/current/catalog-pg-user-mapping.html
https://www.postgresql.org/docs/current/catalog-pg-db-role-setting.html
https://www.postgresql.org/docs/current/infoschema-applicable-roles.html
https://www.postgresql.org/docs/current/infoschema-administrable-role-authorizations.html


Administration: Access Control
About The GRANT and REVOKE Statements

The SQL standard defines the GRANT and REVOKE statements in order to facilitate granting and
revoking permissions to/from users.

© 2011 - 2023 Percona, Inc. 77 /
240



Access Control
About The GRANT Statement

Description: define access privileges
Syntax:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { [ TABLE ] table_name [, ...]
         | ALL TABLES IN SCHEMA schema_name [, ...] }
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } ( column_name [, ...] )
    [, ...] | ALL [ PRIVILEGES ] ( column_name [, ...] ) }
    ON [ TABLE ] table_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { SEQUENCE sequence_name [, ...]
         | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [ PRIVILEGES ] }
    ON DATABASE database_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

© 2011 - 2023 Percona, Inc. 78 /
240



Access Control
GRANT cont'd

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON DOMAIN domain_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN DATA WRAPPER fdw_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN SERVER server_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { EXECUTE | ALL [ PRIVILEGES ] }
    ON { { FUNCTION | PROCEDURE | ROUTINE }
           routine_name [ ( [ [ argmode ] [ arg_name ] arg_type [, ...] ] ) ] [, ...]
         | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON LANGUAGE lang_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

© 2011 - 2023 Percona, Inc. 79 /
240



Access Control
GRANT cont'd

GRANT { { SELECT | UPDATE } [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECT loid [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { CREATE | ALL [ PRIVILEGES ] }
    ON TABLESPACE tablespace_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON TYPE type_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]

where role_specification can be:

    [ GROUP ] role_name
  | PUBLIC
  | CURRENT_USER
  | SESSION_USER

GRANT role_name [, ...] TO role_name [, ...] [ WITH ADMIN OPTION ]

© 2011 - 2023 Percona, Inc. 80 /
240



Access Control
About The REVOKE Statement

Syntax:

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { [ TABLE ] table_name [, ...]
         | ALL TABLES IN SCHEMA schema_name [, ...] }
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | REFERENCES } ( column_name [, ...] )
    [, ...] | ALL [ PRIVILEGES ] ( column_name [, ...] ) }
    ON [ TABLE ] table_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON { SEQUENCE sequence_name [, ...]
         | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [ PRIVILEGES ] }
    ON DATABASE database_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

© 2011 - 2023 Percona, Inc. 81 /
240



Access Control
REVOKE cont'd
REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON DOMAIN domain_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN DATA WRAPPER fdw_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN SERVER server_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { EXECUTE | ALL [ PRIVILEGES ] }
    ON { { FUNCTION | PROCEDURE | ROUTINE }
         function_name [ ( [ [ argmode ] [ arg_name ] arg_type [, ...] ] ) ] [, ...]
         | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON LANGUAGE lang_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

© 2011 - 2023 Percona, Inc. 82 /
240



Access Control
REVOKE cont'd
REVOKE [ GRANT OPTION FOR ]
    { { SELECT | UPDATE } [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECT loid [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { CREATE | ALL [ PRIVILEGES ] }
    ON TABLESPACE tablespace_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON TYPE type_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ]

REVOKE [ ADMIN OPTION FOR ]
    role_name [, ...] FROM role_name [, ...]
    [ CASCADE | RESTRICT ]

© 2011 - 2023 Percona, Inc. 83 /
240



EXAMPLES
Before you start (version 15 only):

/*
GRANT { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    TO role_specification [, ...] [ WITH GRANT OPTION ]
    [ GRANTED BY role_specification ]
*/

grant all privileges on schema PUBLIC to PUBLIC;

Example 1: Granting Privileges

---------
-- INITIAL SETUP: execute as postgres
create role usr1 with login password 'usr1';
create role usr2 with login password 'usr2';
create role usr3 with login password 'usr3';
set role usr1;
select *,'created by usr1'::text "comments" into t1 from generate_series(1,1e6);
select *,'created by usr1'::text "comments" into t2 from generate_series(1,1e6);
select *,'created by usr1'::text "comments" into t3 from generate_series(1,1e6);
create sequence seq1 as integer increment by 2 maxvalue 100 cycle;

analyze verbose t1,t2,t3;
---------

© 2011 - 2023 Percona, Inc. 84 /
240



EXAMPLES Cont'd
---------
grant select, insert, delete, truncate on table t1, t2 to usr2;
set role usr2;
with a as (select count(*) from t1),
     b as (select count(*) from t2)
select a.count "table t1",b.count "table t2" from a,b;
---------
set role usr1;
grant all privileges (generate_series) on table t3 to usr2;
set role usr2;
-- fails
select generate_series,"comments" from t3 order by random() limit 10;
-- succeeds
select generate_series from t3 order by random() limit 10;
---------
set role usr1;
grant usage on sequence seq1 to usr2;
set role usr2;
select nextval('seq1') from generate_series(1,5);
---------
set role usr1;
grant all privileges on t1,t2,t3,seq1 to usr3;
set role usr3;
with a as (select count(*) from t1),
     b as (select count(*) from t2),
     c as (select count(*) from t3),
select a.count "table t1",b.count "table t2", c.count "table t3" from a,b,c;
with a as (select nextval('seq1') from generate_series(1,1000))
select * from a order by random() limit 10;

© 2011 - 2023 Percona, Inc. 85 /
240



EXAMPLES Cont'd
\dp

                              Access privileges
 Schema | Name |   Type   | Access privileges | Column privileges | Policies
--------+------+----------+-------------------+-------------------+----------
 public | seq1 | sequence | usr1=rwU/usr1    +|                   |
        |      |          | usr2=rU/usr1     +|                   |
        |      |          | usr3=rwU/usr1     |                   |
 public | t1   | table    | usr1=arwdDxt/usr1+|                   |
        |      |          | usr2=ardD/usr1   +|                   |
        |      |          | usr3=arwdDxt/usr1 |                   |
 public | t2   | table    | usr1=arwdDxt/usr1+|                   |
        |      |          | usr2=ardD/usr1   +|                   |
        |      |          | usr3=arwdDxt/usr1 |                   |
 public | t3   | table    | usr1=arwdDxt/usr1+| generate_series: +|
        |      |          | usr3=arwdDxt/usr1 |   usr2=arwx/usr1  |

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/ddl-priv.html

86 /
240

https://www.postgresql.org/docs/current/ddl-priv.html


EXAMPLES Cont'd
Example 2:

1. Creating and setting privileges for ROLE usr1.
2. Creating and populating table t1.

-------------------
-- login as superuser "postgres"
drop table if exists t1;

-------------------
BEGIN;
    -- create and populate table
    drop table if exists t1;
    select  generate_series::bigint as id,
        'hello world' as comments,
            now()::timestamp(0) as t_stamp
        into table t1
        from generate_series(1,1e6);
    select * from t1 order by random() limit 10;
COMMIT;
-------------------

© 2011 - 2023 Percona, Inc. 87 /
240



EXAMPLES Cont'd
Example 2 Cont'd: perform an INSERT

-------------------
set role usr1;
\d t1
select * from t1 order by random() limit 10;
-------------------
reset role;
grant select on table t1 to usr1;
-------------------
-- fails
set role usr1;
select * from t1 order by random() limit 10;
with a as (select max(id)+1 as x from t1)
    insert into t1 (id) select x from a returning *;
-------------------
reset role;
grant insert on table t1 to usr1;
-------------------
-- succeeds
set role usr1;
with a as (select max(id)+1 as x from t1)
    insert into t1 (id) select x from a returning *;
-------------------

© 2011 - 2023 Percona, Inc. 88 /
240



EXAMPLES Cont'd
Example 2 Cont'd: Adding constraints and performing UPDATE

-------------------
reset role;
select max(id) from t1;
alter table t1
    add primary key(id),
    alter column id add generated by default as identity (start with 1000103);

\d
\d t1
\d t1_id_seq
-------------------
set role usr1;
select * from t1 order by random() limit 10;

with a as (select max(id)+1 as x from t1)
    insert into t1 values(default,'this row now increments automatically',now()) returning *;

select * from t1 order by id desc limit 5;

update t1 set id=1000002,
              comments='id has been edited',
              t_stamp=now()
    where id=1000002
-------------------
reset role;
grant update on table t1 to usr1;
-------------------
set role usr1;
update t1 set id=1000002,
              comments='id has been edited',
              t_stamp=now()
    where id=1000002
    returning *;
-------------------

© 2011 - 2023 Percona, Inc. 89 /
240



EXAMPLES Cont'd
Example 2 Cont'd: Moving table t1 to a new SCHEMA

-------------------
-- fails
reset role;
create schema usr1;
alter table t1 set schema usr1;

set role usr1;
show search_path;
\d
\d usr1.
select * from t1 order by random() limit 10;
-------------------
-- succeeds
reset role;
grant usage on schema usr1 to usr1;

set role usr1;
select * from t1 order by random() limit 10;
with a as (select max(id)+1 as x from t1)
    insert into t1 values(default,'this row now increments automatically',now()) returning *;
-------------------
-- review environment
reset role;
select current_user, session_user;
alter role usr1 with login;
set session authorization usr1;
select current_user, session_user;
\d

© 2011 - 2023 Percona, Inc. 90 /
240



EXAMPLES Cont'd
EXAMPLE 3:

1. replicating the aforementioned operations in a more succinct manner.
2. resetting the default search path.

-------------------
\c - postgres

revoke all privileges on schema usr1 from usr2 cascade;

revoke all privileges
    on all tables in schema public,usr1
from usr2 cascade;

revoke all privileges
    on all sequences in schema public,usr1
from usr2 cascade;
-------------------
reassign owned by usr2 to usr1;
drop role if exists usr2;
create role usr2 with login password 'usr2';
-------------------
grant select, insert, update on table usr1.t1 to usr2;
grant usage on schema usr1 to usr2;
alter role usr2 set search_path=usr1,public;
-------------------
\c 'host=localhost user=usr2 password=usr2 dbname=db01'
select * from usr1.t1 order by random() limit 10;
-------------------

© 2011 - 2023 Percona, Inc. 91 /
240



EXAMPLES Cont'd
EXAMPLE 4: Leveraging ROLE membership

-------------------
\c 'host=localhost user=postgres password=postgres dbname=db01'
grant usage on schema usr1 to usr3;
grant all privileges on all tables in schema usr1 to usr3;
grant all privileges on all sequences in schema usr1 to usr3;
alter role usr3 with login password 'usr3';
alter database db01 set search_path=usr1,public;
show search_path;
\c
show search_path;
-------------------
\c 'host=localhost user=usr3 password=usr3 dbname=db01'
\dp+
select * from t1 order by random() limit 10;

with a as (select max(id)+1 as x from t1)
    insert into t1 values(default,'this row was inserted by usr3',now()) returning *;
-------------------

© 2011 - 2023 Percona, Inc. 92 /
240



EXAMPLES Cont'd
EXAMPLE 5: REVOKING PRIVILEGES Restricting access to a database

-- ATTENTION: THIS WAS THE FORMER METHOD OF HARDENING PRIVILEGES
-- FOR VERSIONS OLDER THAN POSTGRES VERSION 15

-------------------
-- strip all privileges, valid for postgres < version 15
\c - postgres
create database db02
revoke all privileges on database db02 from PUBLIC cascade;
\c db02
drop schema public;
------------------------
# works
psql 'host=pg1 dbname=db01 user=usr1 password=usr1'
# fails
psql 'host=pg1 dbname=db02 user=usr1 password=usr1'
psql 'host=pg1 dbname=db02 user=usr2 password=usr2'
psql 'host=pg1 dbname=db02 user=usr3 password=usr3'
------------------------
-- as postgres
drop schema public;
create schema usr1 authorization usr1;
create schema usr2 authorization usr2;
create schema usr3 authorization usr3;
grant all privileges on database db02 to usr1, usr2;

# works
psql 'host=pg1 dbname=db02 user=usr1 password=usr1' \
    -c "select *,'created by usr1'::text into t1 from generate_series(1,1e6)"
psql 'host=pg1 dbname=db02 user=usr2 password=usr2' \
    -c "select *,'created by usr2'::text into t1 from generate_series(1,1e6)"
psql 'host=pg1 dbname=db02 user=usr3 password=usr3' \
    -c "select *,'created by usr3'::text into t1 from generate_series(1,1e6)"

© 2011 - 2023 Percona, Inc. 93 /
240



Access Control
CAVEAT

A special user class called 'PUBLIC' exists.
Before version 15: All users had access to schema 'PUBLIC'.
As of version 15: Users no longer have default access privileges.

Restores pre-version 15 behaviour: grant all privileges on schema PUBLIC to PUBLIC;
The addition of 'WITH GRANT OPTION' allows that role to pass on its privilege to others
(GRANT that privilege)
Since function overloading is supported in PostgreSQL, the arguments provided to a
function may be supplied when granting privileges to a function.
In addition to the SQL-standard privilege system available through GRANT, tables can have
row security policies that restrict, on a per-user basis, which rows can be returned by
normal queries or inserted, updated, or deleted by data modification commands.

© 2011 - 2023 Percona, Inc. 94 /
240



PostgreSQL Operations

Monitoring

© 2011 - 2023 Percona, Inc. 95 /
240



Monitoring Postgres Metrics
About

The Postgres System Catalogs & Information Schema
The Statistics Collector
Commonly Used Metrics
Extensions

About
Where To Get It
Commonly Used Extensions

PostgreSQL Administration ROLEs
Command Line Utilities
Analysis/EXPLAIN

© 2011 - 2023 Percona, Inc. 96 /
240



Monitoring Postgres Metrics Cont'd
PostgreSQL System Catalogs & Information Schema

© 2011 - 2023 Percona, Inc. 97 /
240



Monitoring Postgres Metrics Cont'd
Metrics: The Statistics Collector

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/monitoring.html

98 /
240

https://www.postgresql.org/docs/current/monitoring.html


Monitoring Postgres Metrics Cont'd
Commonly Used Metrics

Real-time metrics:

pg_locks
pg_stat_activity

Commonly used metrics for analysis:

pg_class
pg_roles
pg_settings (SHOW status)
pg_stat_all_tables (pg_stat_user_tables)
pg_stat_all_indexes (pg_stat_user_indexes)
pg_statio_all_tables (pg_statio_user_indexes)
pg_statio_all_indexes (pg_statio_user_indexes)
pg_stat_bgwriter
pg_stat_database
pg_stat_progress_vacuum
pg_stat_ssl
pg_stat_user_functions

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/catalogs.html

99 /
240

https://www.postgresql.org/docs/current/catalogs.html


Monitoring Postgres Metrics Cont'd
System Views, Functions And Logging

statistics monitoring of relations
pg_stat_user_indexes
pg_stat_user_tables
pg_statio_user_tables
pg_statio_user_indexes

replication
select * from pg_stat_replication;
select * from pg_replication_slots;
select * from pg_get_replication_slots();
--
select
case
    when pg_last_wal_receive_lsn() = pg_last_wal_replay_lsn()
    then 0
else extract (EPOCH FROM now() - pg_last_xact_replay_timestamp())
end as log_delay;

postgres logging

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/monitoring.html 100

/
240

https://www.postgresql.org/docs/current/monitoring.html


Monitoring Postgres Metrics Cont'd
Extensions:

PostgreSQL is designed to be easily extensible: PostgreSQL extensions are SQL objects bundled into a single
package which can be loaded or removed from your database at will. Once loaded, extensions can enhance the
RDBMS with new and enhanced functionality.

Where To Get It:

1. The PostgreSQL Community Repository Portal
2. The contributions modules shipped with PostgreSQL,

https://www.postgresql.org/docs/current/contrib.html
3. The PostgreSQL Extension Network, https://pgxn.org/
4. Third party portals/projects.

Commonly Used Extensions (Monitoring And Tuning):

pg_stat_statement, https://www.postgresql.org/docs/current/pgstatstatements.html
auto_explain, https://www.postgresql.org/docs/current/auto-explain.html
pg_repack, https://github.com/reorg/pg_repack
pg_stat_monitor, https://pgxn.org/dist/pg_stat_monitor/

© 2011 - 2023 Percona, Inc.
101
/
240

https://www.postgresql.org/docs/current/contrib.html
https://pgxn.org/
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/auto-explain.html
https://github.com/reorg/pg_repack
https://pgxn.org/dist/pg_stat_monitor/


Monitoring Postgres Metrics Cont'd
Extensions

EXTENSION           COMMENTS
autoexplain         Provides a means for logging execution plans
pageinspect         Allows you to inspect the contents of database pages
pg_buffercache      Examine what's happening in the shared buffer cache in real time
pg_freespacemap     Examine the free space map
pgrowlocks          Show row locking information for a specified table
pg_stat_statements  Tracking execution statistics of all SQL statements executed by the ser
pgstattuple         Obtain tuple-level statistics
pg_visibility       Examining the visibility and integrity map  and page-level visibility i
sslinfo             Provides information about the SSL certificate of client connection dur

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/contrib.html 102

/
240

https://www.postgresql.org/docs/current/contrib.html


Monitoring Postgres Metrics Cont'd
Administration:

CREATE EXTENSION [ IF NOT EXISTS ] extension_name
    [ WITH ] [ SCHEMA schema_name ]
             [ VERSION version ]
             [ CASCADE ]

DROP EXTENSION [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]

ALTER EXTENSION name UPDATE [ TO new_version ]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

Querying Extensions:

select * from pg_extension order by 2;
select * from pg_available_extensions() order by 1,2;
select * from pg_available_extension_versions() order by 1,2;

© 2011 - 2023 Percona, Inc.
103
/
240



Monitoring Postgres Metrics Cont'd
PostgreSQL Administration ROLES
                                                     List of roles
         Role name         |                         Attributes            |           Member of
---------------------------+-----------------------------------------------+-----------------------------
 pg_execute_server_program | Cannot login                                  | {}
 pg_monitor                | Cannot login                                  | {pg_read_all_settings,
                           |                                               |  pg_read_all_stats,
                           |                                               |  pg_stat_scan_tables}
 pg_read_all_settings      | Cannot login                                  | {}
 pg_read_all_stats         | Cannot login                                  | {}
 pg_read_server_files      | Cannot login                                  | {}
 pg_signal_backend         | Cannot login                                  | {}
 pg_stat_scan_tables       | Cannot login                                  | {}
 pg_write_server_files     | Cannot login                                  | {}

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/default-roles.html 104

/
240

https://www.postgresql.org/docs/current/default-roles.html


Monitoring Postgres Metrics Cont'd
pg_execute_server_program: Allow executing programs on the database server as the user the database
runs as with COPY and other functions which allow executing a server-side program.

Step 1:

COPY table_name [ ( column_name [, ...] ) ]
    FROM { 'filename' | PROGRAM 'command' | STDIN }
    [ [ WITH ] ( option [, ...] ) ]
    [ WHERE condition ]

Step 2:

(for u in $(seq 0 100)
do
    echo -e "$u \t hello world"
done) | gzip -> /tmp/data.gz

Step 3:

create role usr1 login in role pg_execute_server_program;
set session authorization usr1;

create table t1(c1 integer,c2 varchar(25));
copy t1 from program 'gunzip < /tmp/data.gz';

© 2011 - 2023 Percona, Inc.
105
/
240



Monitoring Postgres Metrics Cont'd
pg_monitor: Read/execute various monitoring views and functions. This role is a member of
pg_read_all_settings, pg_read_all_stats and pg_stat_scan_tables.

create role usr2 login in role pg_monitor;
set session authorization usr2;

db01=> select * from pg_stat_user_tables;
-[ RECORD 1 ]-------+-------
relid               | 35249
schemaname          | public
relname             | t1
seq_scan            | 1
seq_tup_read        | 101
idx_scan            |
idx_tup_fetch       |
n_tup_ins           | 101
n_tup_upd           | 0
n_tup_del           | 0
n_tup_hot_upd       | 0
n_live_tup          | 101
n_dead_tup          | 0
n_mod_since_analyze | 101
n_ins_since_vacuum  | 101
last_vacuum         |
last_autovacuum     |
last_analyze        |
last_autoanalyze    |
vacuum_count        | 0
autovacuum_count    | 0
analyze_count       | 0
autoanalyze_count   | 0

© 2011 - 2023 Percona, Inc.
106
/
240



Monitoring Postgres Metrics Cont'd
pg_read_all_settings: Read all pgstat* views and use various statistics related extensions, even those
normally visible only to superusers.

create role usr4 login in role pg_read_all_stats;
set session authorization usr4;

select * from pg_statio_all_tables;

© 2011 - 2023 Percona, Inc.
107
/
240



Monitoring Postgres Metrics Cont'd
pg_read_all_stats: Read all pgstat* views and use various statistics related extensions, even those normally
visible only to superusers.

create role usr4 login in role pg_read_all_stats;
set session authorization usr4;

select * from pg_statio_all_tables;

© 2011 - 2023 Percona, Inc.
108
/
240



Monitoring Postgres Metrics Cont'd
pg_read_server_files: Allow reading files from any location the database can access on the server with COPY
and other file-access functions.

(for u in $(seq 0 100)
do
    echo -e "$u \t hello world"
done) > /tmp/data

create role usr5 login in role pg_read_server_files;
set session authorization usr5;

create table t2(c1 integer,c2 varchar(25));

copy t2 from '/tmp/data';

© 2011 - 2023 Percona, Inc.
109
/
240



Monitoring Postgres Metrics Cont'd
pg_signal_backend: Signal another backend to cancel a query or terminate its session.

Step 1:

--
-- session 1
--
create role usr6 login in role pg_signal_backend;
set session authorization usr6;

Step 2:

--
-- session 2
--
\c 'dbname=db01 application_name=sleep user=usr1'
select pg_sleep_for('1 day');

Step 3:

--
-- session 1
--
select pg_cancel_backend(pid) from pg_stat_activity where application_name='sleep';

© 2011 - 2023 Percona, Inc.
110
/
240



Monitoring Postgres Metrics Cont'd
pg_stat_scan_tables: Execute monitoring functions that may take ACCESS SHARE locks on tables, potentially
for a long time.

create extensions pgstattuple;

create role usr7 login in role pg_stat_scan_tables;
set session authorization usr7;

select * from pgstattuple('pg_catalog.pg_proc');

© 2011 - 2023 Percona, Inc.
111
/
240



Monitoring Postgres Metrics Cont'd
pg_write_server_files: Allow writing to files in any location the database can access on the server with COPY
and other file-access functions.

create role usr8 login in role pg_write_server_files;
set session authorization usr8;

select *,'hello world'::text into t3 from (select * from generate_series(1,1e6))t;
copy t3 to '/tmp/data.out';

© 2011 - 2023 Percona, Inc.
112
/
240



Monitoring Postgres Metrics Cont'd
Analysis: About The Query Planner

Server recieves query
The parser scans through the query and checks it for syntax errors
The parser converts it into a parse tree
Query optimizer develops a plan of execution for the query:

Examines data in tables
Reviews all possible execution plans
Determines order to execute including use of indexes
Breaks down complex queries into simple steps and finding the “cheapest” ones
Different query operators have different cost estimates
Query cost:

Disk IO
CPU usage

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/planner-stats.html 113

/
240

https://www.postgresql.org/docs/current/planner-stats.html


Monitoring Postgres Metrics Cont'd
Analysis: About EXPLAIN

Command:     EXPLAIN
Description: show the execution plan of a statement
Syntax:
EXPLAIN [ ( option [, ...] ) ] statement
EXPLAIN [ ANALYZE ] [ VERBOSE ] statement

where option can be one of:

    ANALYZE [ boolean ]
    VERBOSE [ boolean ]
    COSTS [ boolean ]
    SETTINGS [ boolean ]
    BUFFERS [ boolean ]
    WAL [ boolean ]
    TIMING [ boolean ]
    SUMMARY [ boolean ]
    FORMAT { TEXT | XML | JSON | YAML }

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/using-explain.html 114

/
240

https://www.postgresql.org/docs/current/using-explain.html


Monitoring Postgres Metrics Cont'd
Analysis: About PostgreSQL Query Operators

    - Example/DEMO relations
    - seq scan                  - index scan
    - sort                      - limit
    - aggregate                 - hashaggregate
    - unique                    - group by
    - union                     - append
    - setop: EXCEPT             - setop: INTERSECT
    - result                    - nestedloop
    - subquery scan             - recursive
    - tid scan

© 2011 - 2023 Percona, Inc.
115
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

Demonstration:

select generate_series as id, 'hello world'::text as comments into t1
    from (select * from generate_series(1,1e6))t;

select generate_series as id, 'hello world'::text as comments into t2
    from (select * from generate_series(1,1000))t;

alter table t1 add primary key(id);
alter table t2 add foreign key(id) references t1(id);

© 2011 - 2023 Percona, Inc.
116
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- seq scan
db01=# explain select * from t1;
                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=18)

db01=# explain select * from t1 where comments='hello';
                              QUERY PLAN
----------------------------------------------------------------------
 Gather  (cost=1000.00..12578.43 rows=1 width=18)
   Workers Planned: 2
   ->  Parallel Seq Scan on t1  (cost=0.00..11578.33 rows=1 width=18)
         Filter: (comments = 'hello'::text)

-- index scan
db01=# explain select * from t1 where id=1000;
                            QUERY PLAN
-------------------------------------------------------------------
 Index Scan using t1_pkey on t1  (cost=0.42..8.44 rows=1 width=18)
   Index Cond: (id = '1000'::numeric)

© 2011 - 2023 Percona, Inc.
117
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- sort operator
db01=# explain select * from t1 order by comments desc;
                            QUERY PLAN
-------------------------------------------------------------------
 Sort  (cost=136537.84..139037.84 rows=1000000 width=18)
   Sort Key: comments DESC
   ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=18)

-- limit
db01=# explain select * from t1 limit 10;
                            QUERY PLAN
-------------------------------------------------------------------
 Limit  (cost=0.00..0.16 rows=10 width=18)
   ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=18)

© 2011 - 2023 Percona, Inc.
118
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- aggregate
db01=# explain select count(id) from t1;
                                      QUERY PLAN
--------------------------------------------------------------------------------------
 Finalize Aggregate  (cost=12578.55..12578.56 rows=1 width=8)
   ->  Gather  (cost=12578.33..12578.54 rows=2 width=8)
         Workers Planned: 2
         ->  Partial Aggregate  (cost=11578.33..11578.34 rows=1 width=8)
               ->  Parallel Seq Scan on t1  (cost=0.00..10536.67 rows=416667 width=6)

-- alternate aggregate behaviour
db01=# explain select min(id), max(id) from t1;
                                          QUERY PLAN
-----------------------------------------------------------------------------------------------
 Result  (cost=0.46..0.47 rows=1 width=32)
   InitPlan 1 (returns $0)
     ->  Limit  (cost=0.42..0.46 rows=1 width=6)
           ->  Index Only Scan using t1_pkey on t1  (cost=0.42..34853.43 rows=1000000 width=6)
                 Index Cond: (id IS NOT NULL)

© 2011 - 2023 Percona, Inc.
119
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- hashaggregate, group key operators
db01=# explain select distinct (comments) from t1;
                            QUERY PLAN
-------------------------------------------------------------------
 HashAggregate  (cost=18870.00..18870.01 rows=1 width=12)
   Group Key: comments
   ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=12)

-- unique operator
db01=# explain select distinct * from t1;
                               QUERY PLAN
-------------------------------------------------------------------------
 Unique  (cost=136537.84..144037.84 rows=1000000 width=18)
   ->  Sort  (cost=136537.84..139037.84 rows=1000000 width=18)
         Sort Key: id, comments
         ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=18)

db01=# explain select distinct (id) from t1;
                                      QUERY PLAN
---------------------------------------------------------------------------------------
 Unique  (cost=0.42..34853.43 rows=1000000 width=6)
   ->  Index Only Scan using t1_pkey on t1  (cost=0.42..32353.42 rows=1000000 width=6)

© 2011 - 2023 Percona, Inc.
120
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- group by operator on column without an index
db01=# explain select comments from t1 group by comments;
                                         QUERY PLAN
---------------------------------------------------------------------------------------------
 Group  (cost=12578.38..12578.62 rows=1 width=12)
   Group Key: comments
   ->  Gather Merge  (cost=12578.38..12578.61 rows=2 width=12)
         Workers Planned: 2
         ->  Sort  (cost=11578.35..11578.36 rows=1 width=12)
               Sort Key: comments
               ->  Partial HashAggregate  (cost=11578.33..11578.34 rows=1 width=12)
                     Group Key: comments
                     ->  Parallel Seq Scan on t1  (cost=0.00..10536.67 rows=416667 width=12)

-- group by operator on column with an index
db01=# explain select id from t1 group by id;
                                      QUERY PLAN
---------------------------------------------------------------------------------------
 Group  (cost=0.42..34853.43 rows=1000000 width=6)
   Group Key: id
   ->  Index Only Scan using t1_pkey on t1  (cost=0.42..32353.42 rows=1000000 width=6)

© 2011 - 2023 Percona, Inc.
121
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- append operator, union
db01=# explain select id from t1 union select id from t2;
                                       QUERY PLAN
----------------------------------------------------------------------------------------
 Unique  (cost=155118.72..160123.72 rows=1001000 width=32)
   ->  Sort  (cost=155118.72..157621.22 rows=1001000 width=32)
         Sort Key: t1.id
         ->  Append  (cost=0.00..31403.50 rows=1001000 width=32)
               ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=6)
               ->  Subquery Scan on "*SELECT* 2"  (cost=0.00..28.50 rows=1000 width=32)
                     ->  Seq Scan on t2  (cost=0.00..16.00 rows=1000 width=4)

-- append operator, union all
db01=# explain select id from t1 union all select id from t2;
                                 QUERY PLAN
----------------------------------------------------------------------------
 Append  (cost=0.00..31403.50 rows=1001000 width=32)
   ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=6)
   ->  Subquery Scan on "*SELECT* 2"  (cost=0.00..28.50 rows=1000 width=32)
         ->  Seq Scan on t2  (cost=0.00..16.00 rows=1000 width=4)

© 2011 - 2023 Percona, Inc.
122
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- SetOp EXCEPT
db01=# explain select id from t1 except select id from t2;
                                          QUERY PLAN
----------------------------------------------------------------------------------------------
 SetOp Except  (cost=185915.22..190920.22 rows=1000000 width=36)
   ->  Sort  (cost=185915.22..188417.72 rows=1001000 width=36)
         Sort Key: "*SELECT* 1".id
         ->  Append  (cost=0.00..31403.50 rows=1001000 width=36)
               ->  Subquery Scan on "*SELECT* 1"  (cost=0.00..26370.00 rows=1000000 width=10)
                     ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=6)
               ->  Subquery Scan on "*SELECT* 2"  (cost=0.00..28.50 rows=1000 width=36)
                     ->  Seq Scan on t2  (cost=0.00..16.00 rows=1000 width=4)

-- SetOp INTERSECT
db01=# explain select id from t1 intersect select id from t2;
                                       QUERY PLAN
----------------------------------------------------------------------------------------
 HashSetOp Intersect  (cost=0.00..33906.00 rows=1000 width=36)
   ->  Append  (cost=0.00..31403.50 rows=1001000 width=36)
         ->  Subquery Scan on "*SELECT* 2"  (cost=0.00..28.50 rows=1000 width=36)
               ->  Seq Scan on t2  (cost=0.00..16.00 rows=1000 width=4)
         ->  Subquery Scan on "*SELECT* 1"  (cost=0.00..26370.00 rows=1000000 width=10)
               ->  Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=6)

© 2011 - 2023 Percona, Inc.
123
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- result operator
-- EX 1: no result operator used
db01=# explain select * from t1 where 1=1;
                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on t1  (cost=0.00..16370.00 rows=1000000 width=18)

-- EX 2
db01=# explain select * from t1 where 1<1;
                QUERY PLAN
------------------------------------------
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: false

-- EX 3
db01=# explain select * from t1 where 'lunch'='dinner';
                QUERY PLAN
------------------------------------------
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: false

© 2011 - 2023 Percona, Inc.
124
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- nested loop: natural join
db01=# explain select a.id,a.comments, b.comments
from t1 as a
natural join t2 as b;
                                QUERY PLAN
---------------------------------------------------------------------------
 Nested Loop  (cost=0.43..7569.50 rows=1000 width=30)
   ->  Seq Scan on t2 b  (cost=0.00..16.00 rows=1000 width=16)
   ->  Index Scan using t1_pkey on t1 a  (cost=0.43..7.54 rows=1 width=18)
         Index Cond: (id = (b.id)::numeric)
         Filter: (b.comments = comments)

db01=# explain select a.id,a.comments, b.comments
from t1 as a
join t2 as b using(id);
                                QUERY PLAN
---------------------------------------------------------------------------
 Nested Loop  (cost=0.43..7557.00 rows=1000 width=30)
   ->  Seq Scan on t2 b  (cost=0.00..16.00 rows=1000 width=16)
   ->  Index Scan using t1_pkey on t1 a  (cost=0.43..7.54 rows=1 width=18)
         Index Cond: (id = (b.id)::numeric)

db01=# explain select a.id,a.comments,b.comments from t1 as a ,t2 as b where a.id=b.id;
                                QUERY PLAN
---------------------------------------------------------------------------
 Nested Loop  (cost=0.43..7557.00 rows=1000 width=30)
   ->  Seq Scan on t2 b  (cost=0.00..16.00 rows=1000 width=16)
   ->  Index Scan using t1_pkey on t1 a  (cost=0.43..7.54 rows=1 width=18)
         Index Cond: (id = (b.id)::numeric)

© 2011 - 2023 Percona, Inc.
125
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- subquery scan and subplan operators
-- EX 1: subselect
db01=# explain select * from t1 where id in (select id from t2 order by random() limit 10);
                                     QUERY PLAN
-------------------------------------------------------------------------------------
 Nested Loop  (cost=40.69..124.81 rows=10 width=18)
   ->  HashAggregate  (cost=40.26..40.36 rows=10 width=4)
         Group Key: ("ANY_subquery".id)::numeric
         ->  Subquery Scan on "ANY_subquery"  (cost=40.11..40.23 rows=10 width=4)
               ->  Limit  (cost=40.11..40.13 rows=10 width=12)
                     ->  Sort  (cost=40.11..42.61 rows=1000 width=12)
                           Sort Key: (random())
                           ->  Seq Scan on t2  (cost=0.00..18.50 rows=1000 width=12)
   ->  Index Scan using t1_pkey on t1  (cost=0.43..8.45 rows=1 width=18)
         Index Cond: (id = ("ANY_subquery".id)::numeric)

-- EX 2: Common Table Expression
db01=# explain with a as (select id from t2 order by random() limit 10)
select * from t1 join a using (id);
                                QUERY PLAN
---------------------------------------------------------------------------
 Nested Loop  (cost=40.56..124.78 rows=10 width=18)
   CTE a
     ->  Limit  (cost=40.11..40.13 rows=10 width=12)
           ->  Sort  (cost=40.11..42.61 rows=1000 width=12)
                 Sort Key: (random())
                 ->  Seq Scan on t2  (cost=0.00..18.50 rows=1000 width=12)
   ->  CTE Scan on a  (cost=0.00..0.20 rows=10 width=4)
   ->  Index Scan using t1_pkey on t1  (cost=0.43..8.45 rows=1 width=18)
         Index Cond: (id = (a.id)::numeric)

© 2011 - 2023 Percona, Inc.
126
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- recursive
db01=# explain with recursive t(n) as (
db01(#     values (1)
db01(#   union all
db01(#     select n+1 from t where n < 100
db01(# )
db01-# select sum(n) from t;
                               QUERY PLAN
-------------------------------------------------------------------------
 Aggregate  (cost=3.65..3.66 rows=1 width=8)
   CTE t
     ->  Recursive Union  (cost=0.00..2.95 rows=31 width=4)
           ->  Result  (cost=0.00..0.01 rows=1 width=4)
           ->  WorkTable Scan on t t_1  (cost=0.00..0.23 rows=3 width=4)
                 Filter: (n < 100)
   ->  CTE Scan on t  (cost=0.00..0.62 rows=31 width=4)

© 2011 - 2023 Percona, Inc.
127
/
240



Monitoring Postgres Metrics Cont'd
Analysis: PostgreSQL Query Operators Cont'd

-- tid scan operator
db01=# select ctid,id from t1 order by random() limit 5;
    ctid    |   id
------------+--------
 (1677,10)  | 263299
 (320,154)  |  50394
 (1052,144) | 165308
 (123,95)   |  19406
 (4967,1)   | 779820

db01=# explain select * from t1 where id=263299;
                            QUERY PLAN
-------------------------------------------------------------------
 Index Scan using t1_pkey on t1  (cost=0.42..8.44 rows=1 width=18)
   Index Cond: (id = '263299'::numeric)

db01=# explain select * from t1 where ctid='(1677,10)';
                    QUERY PLAN
---------------------------------------------------
 Tid Scan on t1  (cost=0.00..4.01 rows=1 width=18)
   TID Cond: (ctid = '(1677,10)'::tid)

© 2011 - 2023 Percona, Inc.
128
/
240



PostgreSQL Operations

Troubleshooting

© 2011 - 2023 Percona, Inc.
129
/
240



Troubleshooting
OS COMMAND LINE UTILITY         COMMENTS

atop                            Advanced System & Process Monitor
dstat                           Versatile Tool For Generating System Resource Statistics
htop                            Interactive Process Viewer
iotop                           Simple Top-Like I/O Monitor Does Not Work Inside A Container
iostat                          Report Central Processing Unit (Cpu) Statistics
                                    And Input/Output Statistics For Devices And Partitions

netstat                         Print Network Connections, Routing Tables, Interface Statistics,
                                    Masquerade Connections, And Multicast Memberships

ps                              Report A Snapshot Of The Current Processes
sar                             Collect, Report, Or Save System Activity Information
ss                              Another Utility To Investigate Sockets
top                             Display Linux Processes
vmstat                          Report Virtual Memory Statistics
----------------------------------------------------------------
POSTGRES CLI                    COMMENTS

pg_activity                     htop like application for PostgreSQL server activity monitoring
pg_controldata                  displays control information of a PostgreSQL database cluster.
pg_isready                      test if accepting connections
pg_repack                       repack tables and indexes
pg_top                          monitors a PostgreSQL database cluster
pg_ctl                          a utility to initialize, start, stop, or control a PostgreSQL server

ATTENTION:
- package name in CENTOS it is "pg_activity", in Ubuntu it is "pg-activity"
- package name CENTOS it is "pg_top", in Ubuntu it is "pgtop"

© 2011 - 2023 Percona, Inc.
130
/
240



Troubleshooting Cont'd
EXAMPLE: CLI Installation

# CENTOS 8
dnf update -y
dnf install -y epel-release
dnf update -y

dnf install -y atop dstat htop iotop sysstat net-tools pg_activity pg_repack_15

updatedb

© 2011 - 2023 Percona, Inc.
131
/
240



Troubleshooting Cont'd
COMMONLY USED MONITORING UTILITIES

LINUX

ps
free
top
sar
dstat

POSTGRES

pg_activity
pg_top

© 2011 - 2023 Percona, Inc.
132
/
240



Troubleshooting Cont'd
BENCHMARKING EXAMPLE

#
# Recall, initialize:
#   pgbench -h <myhost> -i <mydatabase>
#
#   export PGHOST=pg1 PGUSER=postgres PGPASSWORD=postgres
#
pgbench -i pgbench

#
# Alternate initialization
#
pgbench -i --foreign-keys -s 3 pgbench

#
# Review database
#
pg_dump -Fc pgbench -f /dev/stdout

#
# Benchmarking
#
pgbench -h pg1 -c 4 -j 1 -T 600 -b tpcb-like pgbench

TIP: monitoring all processes as LINUX user "postgres"

© 2011 - 2023 Percona, Inc.
133
/
240



Troubleshooting Cont'd
MOST COMMON MITIGATION ISSUES

Logging
- tail -f <postgres.log> | grep -E 'ERROR|FATAL'

Terminating Session Connections
- select pg_cancel_backend(pid) from pg_stat_activity where ...;
- select pg_terminate_backend(pid) from pg_stat_activity where ...;
- kill -15 <PID>
- DANGER!: kill -09 <PID>

Terminating Service
- systemctl stop ...
- pg_ctl -m [smart|fast|immediate] stop -D PGDATA
- killall -w [postgres (debian) | postmaster (redhat)]

Bloat Mitigation
- pg_repack -h <host> -U postgres -a

Wraparound TXID

© 2011 - 2023 Percona, Inc.
134
/
240



Troubleshooting Cont'd
TERMINATING CONNECTIONS

View "pg_catalog.pg_stat_activity"
      Column      |           Type
------------------+--------------------------
 datid            | oid
 datname          | name
 pid              | integer
 usesysid         | oid
 usename          | name
 application_name | text
 client_addr      | inet
 client_hostname  | text
 client_port      | integer
 backend_start    | timestamp with time zone
 xact_start       | timestamp with time zone
 query_start      | timestamp with time zone
 state_change     | timestamp with time zone
 wait_event_type  | text
 wait_event       | text
 state            | text
 backend_xid      | xid
 backend_xmin     | xid
 query            | text
 backend_type     | text

© 2011 - 2023 Percona, Inc.
135
/
240



Troubleshooting Cont'd
TERMINATING CONNECTIONS Cont'd

Cancel a backend's current query:

select pg_cancel_backend(pid) from pg_stat_activity;

Terminate a backend (superuser):

select pg_terminate_backend(pid) from pg_stat_activity;

Terminating A Connection That's Lived Too Long:

select pg_terminate_backend(pid) from pg_stat_activity where backend_start < now()-'1 day'::interval;

© 2011 - 2023 Percona, Inc.
136
/
240



Troubleshooting Cont'd
BLOAT MITIGATION

Usage:
  pg_repack [OPTION]... [DBNAME]
Options:
  -a, --all                 repack all databases
  -t, --table=TABLE         repack specific table only
  -I, --parent-table=TABLE  repack specific parent table and its inheritors
  -c, --schema=SCHEMA       repack tables in specific schema only
  -s, --tablespace=TBLSPC   move repacked tables to a new tablespace
  -S, --moveidx             move repacked indexes to TBLSPC too
  -o, --order-by=COLUMNS    order by columns instead of cluster keys
  -n, --no-order            do vacuum full instead of cluster
  -N, --dry-run             print what would have been repacked
  -j, --jobs=NUM            Use this many parallel jobs for each table
  -i, --index=INDEX         move only the specified index
  -x, --only-indexes        move only indexes of the specified table
  -T, --wait-timeout=SECS   timeout to cancel other backends on conflict
  -D, --no-kill-backend     don't kill other backends when timed out
  -Z, --no-analyze          don't analyze at end
  -k, --no-superuser-check  skip superuser checks in client
  -C, --exclude-extension   don't repack tables which belong to specific extension

Generic options:
  -e, --echo                echo queries
  -E, --elevel=LEVEL        set output message level
  --help                    show this help, then exit
  --version                 output version information, then exit

© 2011 - 2023 Percona, Inc.
137
/
240



Troubleshooting Cont'd
WRAP-AROUND TXID

WITH max_age AS (SELECT 2000000000 as max_old_xid,
                             setting AS autovacuum_freeze_max_age
                      FROM pg_catalog.pg_settings
                      WHERE name = 'autovacuum_freeze_max_age' ),
           per_database_stats AS (SELECT datname
                                        , m.max_old_xid::int
                                        , m.autovacuum_freeze_max_age::int
                                        , age(d.datfrozenxid) AS oldest_current_xid
                                    FROM pg_catalog.pg_database d
                                    JOIN max_age m ON (true)
                                    WHERE d.datallowconn )
SELECT max(oldest_current_xid) AS oldest_current_xid
    , max(ROUND(100*(oldest_current_xid/max_old_xid::float))) AS percent_towards_wraparound
    , max(ROUND(100*(oldest_current_xid/autovacuum_freeze_max_age::float))) AS percent_towards_emergency_autovac
FROM per_database_stats;

Example

- wraparound txid limit = 2 billion transactions    # forced server shutdown
- default autovacuum_freeze_max_age = 200,000,000   # maximum XID age before forced vacuum

 oldest_current_xid | percent_towards_wraparound | percent_towards_emergency_autovac
--------------------+----------------------------+-----------------------------------
        194,623,673 |                         10 |                                 97

© 2011 - 2023 Percona, Inc.
138
/
240



PostgreSQL Operations And Troubleshooting

High Availability

© 2011 - 2023 Percona, Inc.
139
/
240



Overview

© 2011 - 2023 Percona, Inc.
140
/
240



About High Availability (HA)
Topics

WAL Log Shipping
BaseBackups
Replication via Log Shipping
Replication via Streaming

Without slots
With slots
Variations

Log Shipping & Streaming Hybrid
Warm Standby vs Hot Standby

Cascading Replication
Synchronous Replication
Logical Replication
Caveat

© 2011 - 2023 Percona, Inc.
141
/
240



Replication History

© 2011 - 2023 Percona, Inc.
142
/
240



Configuration Settings
Sending Servers

max_wal_senders max_replication_slots wal_keep_size
wal_sender_timeout track_commit_timestamp

Master Server

synchronous_standby_names vacuum_defer_cleanup_age

Standby Servers

primary_conninfo primary_slot_name promote_trigger_file
hot_standby max_standby_archive_delay max_standby_streaming_delay

wal_receiver_status_interval hot_standby_feedback wal_receiver_timeout

wal_retrieve_retry_interval recovery_min_apply_delay

Subscribers

max_logical_replication_workers max_sync_workers_per_subscription

© 2011 - 2023 Percona, Inc.
https://www.postgresql.org/docs/current/runtime-config-replication.html 143

/
240

https://www.postgresql.org/docs/current/runtime-config-replication.html


Log Shipping

© 2011 - 2023 Percona, Inc.
144
/
240



Log Shipping
Generate public key for postgres on PRIMARY and copy to REPLICA

ssh postgres@pg1

-bash-4.2$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/var/lib/pgsql/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /var/lib/pgsql/.ssh/id_rsa.
Your public key has been saved in /var/lib/pgsql/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:7Ik+QQzwmZMrtW5HTtZAAEymAV5arTY8B0z5tZC4JmI postgres@pg1
The key's randomart image is:
...

# copy public key to hosts pg2 and pg3
ssh-copy-id postgres@pg2
ssh-copy-id postgres@pg3

© 2011 - 2023 Percona, Inc.
145
/
240



Log Shipping Cont'd
Host pg2: Create WAL directory on REPLICA

ssh postgres@pg2
mkdir -p $HOME/WAL
exit

Host pg1: setup WAL Log shipping

# as root, sudo as postgres
ssh root@pg1
su - postgres

-- update system as superuser postgres
alter system set archive_mode = on;
alter system set archive_command = 'scp %p pg2:WAL/%f';
alter system set wal_keep_size = 100;
alter system set wal_log_hints = 'on';

# as root, restart postgres service
systemctl restart postgresql-15

© 2011 - 2023 Percona, Inc.
146
/
240



Log Shipping Cont'd
Host pg1: Generate WALS

-- Login pg1, as postgres superuser and perform the following
dropdb database if exists db01;
create database db01;

\c db01

select *,'hello world'::text as comments
    into table t1
    from (select * from generate_series(1,1e6))t;

-- Flush data files to disk
checkpoint;
-- Force switch to a new write-ahead log file
select pg_walfile_name(pg_switch_wal());

Host pg1: remote LOGIN host pg2

su - postgres
ssh postgres@pg2 ls -l WAL

© 2011 - 2023 Percona, Inc.
147
/
240



Basebackups
About Basebackups

pg_basebackup --help

Usage:
  pg_basebackup [OPTION]...

Options controlling the output:
  -D, --pgdata=DIRECTORY receive base backup into directory
  -F, --format=p|t       output format (plain (default), tar)
  -r, --max-rate=RATE    maximum transfer rate to transfer data directory
                         (in kB/s, or use suffix "k" or "M")
  -R, --write-recovery-conf
                         write configuration for replication
  -T, --tablespace-mapping=OLDDIR=NEWDIR
                         relocate tablespace in OLDDIR to NEWDIR
      --waldir=WALDIR    location for the write-ahead log directory
  -X, --wal-method=none|fetch|stream
                         include required WAL files with specified method
  -z, --gzip             compress tar output
  -Z, --compress=0-9     compress tar output with given compression level

© 2011 - 2023 Percona, Inc.
148
/
240



Basebackups Cont'd
General options:
  -c, --checkpoint=fast|spread
                         set fast or spread checkpointing
  -C, --create-slot      create replication slot
  -l, --label=LABEL      set backup label
  -n, --no-clean         do not clean up after errors
  -N, --no-sync          do not wait for changes to be written safely to disk
  -P, --progress         show progress information
  -S, --slot=SLOTNAME    replication slot to use
  -v, --verbose          output verbose messages
  -V, --version          output version information, then exit
      --no-slot          prevent creation of temporary replication slot
      --no-verify-checksums
                         do not verify checksums
  -?, --help             show this help, then exit

© 2011 - 2023 Percona, Inc.
149
/
240



Basebackups Cont'd
Connection options:
  -d, --dbname=CONNSTR   connection string
  -h, --host=HOSTNAME    database server host or socket directory
  -p, --port=PORT        database server port number
  -s, --status-interval=INTERVAL
                         time between status packets sent to server (in seconds)
  -U, --username=NAME    connect as specified database user
  -w, --no-password      never prompt for password
  -W, --password         force password prompt (should happen automatically)

© 2011 - 2023 Percona, Inc.
150
/
240



Log Shipping Replication

© 2011 - 2023 Percona, Inc.
151
/
240



Replication Via Log Shipping
Confirm remote connectivity access

# on pg1: check for listening service
[root@pg1 ~]# netstat -tlnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      297/sshd
tcp        0      0 0.0.0.0:5432            0.0.0.0:*               LISTEN      1629/postmaster
tcp6       0      0 :::22                   :::*                    LISTEN      297/sshd
tcp6       0      0 :::5432                 :::*                    LISTEN      1629/postmaster

# on pg2: attempt test login
[root@pg2 ~] psql 'host=pg1 user=postgres password=postgres' -c "select 1 as ping"
 ping
------
    1

Check Server Status On Host pg2

Method 1:

systemctl status postgresql-15  # CENTOS
systemctl status postgresql     # Ubuntu

Method 2:

ps aux | grep postgres

© 2011 - 2023 Percona, Inc.
152
/
240



Replication Via Log Shipping Cont'd
Delete any pre-existing data cluster

rm -rf /var/lib/pgsql/15/data/*     # CENTOS

pg_dropcluster --stop 12 main       # Ubuntu

Perform BaseBackup

su - postgres
export PGDATA=/var/lib/pgsql/15/data    # CENTOS
cd $HOME

Configure REPLICA

echo "
hot_standby = 'on'
recovery_target_timeline = 'latest'
# CENTOS
restore_command='cp /var/lib/pgsql/WAL/%f "%p"'
archive_cleanup_command = '/usr/pgsql-15/bin/pg_archivecleanup /var/lib/pgsql/WAL %r'
# UBUNTU
#restore_command='cp /var/lib/postgresql/WAL/%f "%p"'
#archive_cleanup_command = '/usr/pgsql-15/bin/pg_archivecleanup /var/lib/postgresql/WAL %r'
" >> $PGDATA/postgresql.auto.conf

touch $PGDATA/standby.signal

© 2011 - 2023 Percona, Inc.
153
/
240



Replication Via Log Shipping Cont'd
As root: REPLICA service start

systemctl start postgresql-15

netstat -tlnp

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      297/sshd
tcp        0      0 0.0.0.0:5432            0.0.0.0:*               LISTEN      867/postmaster
tcp6       0      0 :::22                   :::*                    LISTEN      297/sshd
tcp6       0      0 :::5432                 :::*                    LISTEN      867/postmaster

Create table and populate records on host pg1

SQL="select * into table t2 from generate_series(1,1e6)"
psql 'host=pg1 dbname=db01 user=postgres password=postgres'<<<$SQL
psql 'host=pg1 dbname=db01 user=postgres password=postgres' -c 'checkpoint;select pg_switch_wal()'

Confirm replication on host pg2

[root@pg2 ~] psql 'host=pg2 dbname=db01 user=postgres password=postgres' -c '\dt+'
                   List of relations
 Schema | Name | Type  |  Owner   | Size  | Description
--------+------+-------+----------+-------+-------------
 public | t1   | table | postgres | 50 MB |
 public | t2   | table | postgres | 35 MB |

© 2011 - 2023 Percona, Inc.
154
/
240



Streaming Replication Without Slots

© 2011 - 2023 Percona, Inc.
155
/
240



Replication Via Streaming, Without
Slots

Execute on PRIMARY, host pg1

-- Add a replicating ROLE
create role replicant with login replication password 'mypassword';
--
-- enable streaming replication
alter system set wal_level = 'replica';

# as root; restart the service on PRIMARY pg1
systemctl restart postgresql-15

Execute on REPLICA, host pg2

-- point REPLICA to PRIMARY
alter system set primary_conninfo = 'host=pg1 user=replicant password=mypassword';

# as root; restart the service on REPLICA pg2
systemctl restart postgresql-15

© 2011 - 2023 Percona, Inc.
156
/
240



Streaming Replication With Slots

© 2011 - 2023 Percona, Inc.
157
/
240



Replication Via Streaming, With Slots
Method 1: update existing configuration

Execute on PRIMARY, host pg1

select pg_create_physical_replication_slot('pg2');

Execute on REPLICA, host pg2

-- point REPLICA to PRIMARY using slot
alter system set primary_slot_name = 'pg2'

# as root; restart the service on REPLICA pg2
systemctl restart postgresql-15

Execute on PRIMARY, host pg1

-- confirm replication slot is active
postgres=# select slot_name, slot_type, active, active_pid from pg_replication_slots;
 slot_name | slot_type | active | active_pid
-----------+-----------+--------+------------
 pg2       | physical  | t      |       2313

© 2011 - 2023 Percona, Inc.
158
/
240



Replication Via Streaming, With Slots
Method 2: generate new basebackup

As root: execute the following on REPLICA pg2

Stop the service
Delete the data cluster
Create a new basebackup using slots, it's assumed no physical slot has already been created on PRIMARY

rm -rf /var/lib/pgsql/15/data/

# PGDATA environment variable assumes CENTOS
systemctl stop postgresql-15
su - postgres
rm -rf /var/lib/pgsql/15/data

/usr/pgsql-15/bin/pg_basebackup -d 'host=pg1 user=postgres password=postgres port=5432' \
                                --wal-method=stream \
                                -l basebackup \
                                -D /var/lib/pgsql/15/data \
                                -R -P -v \
                                --create-slot \
                                --slot=pg2

touch $PGDATA/standby.signal

© 2011 - 2023 Percona, Inc.
159
/
240



PostgreSQL Replication, Variations

© 2011 - 2023 Percona, Inc.
160
/
240



PostgreSQL Replication, Variations
Standby Mode: (requires a server restart)

-- Warm Standby (No Read)
alter system set hot_standby='off';

-- Hot Standby (DEFAULT: Read-Only)
alter system set hot_standby='on';

© 2011 - 2023 Percona, Inc.
161
/
240



Cascading Replication

© 2011 - 2023 Percona, Inc.
162
/
240



Cascading Replication, Cont'd
Perform BaseBackup

systemctl stop postgresql-15
su - postgres
rm -rf /var/lib/pgsql/15/data

# host is changed from pg1 to pg2
/usr/bin/pg_basebackup -d 'host=pg2 user=postgres password=postgres port=5432' \
                       --wal-method=stream \
                       -l basebackup \
                       -D /var/lib/pgsql/15/data \
                       -R -P -v \
                       --create-slot \
                       --slot=pg3

Configure CASCADED REPLICA, valid for pg ver 12+

touch $PGDATA/standby.signal

© 2011 - 2023 Percona, Inc.
163
/
240



Synchronous Replication

© 2011 - 2023 Percona, Inc.
164
/
240



Asynchronous VS Synchronous
Replication:

Asynchronous replication is non-blocking and returns as soon as the transaction is committed on the PRIMARY.
Synchronous replication commits a transaction only when the operation completes on the slave(s).

#synchronous_standby_names = '' # SYNC ORDER
                                #   num_sync is the number of synchronous standbys
                                #   that transactions need to wait for replies from
                                #
                                # '*' OR 'all'
                                # [FIRST] num_sync ( standby_name [, ...] )
                                # ANY num_sync ( standby_name [, ...] )
                                # standby_name [, ...]
                                #

#synchronous_commit = on        # synchronization level;
                                #   off            # synchronous replication is ignored
                                #
                                #   local          # guaranteed data flush only on the primary node
                                #
                                #   remote_write   # commit waits for confirmation from standby
                                #                       writing the record (not yet flushed)
                                #
                                #   remote_apply   # standby replies when the commit record is replayed
                                #
                                #   on             # waits until data is flushed
                                #                       to the transaction log on all hosts

cluster_name (string)           # Sets a name that identifies this database cluster.

© 2011 - 2023 Percona, Inc.
165
/
240



Synchronous Replication, Cont'd
HOST=PG1

-- ensure slots are present on the PRIMARY
select pg_create_physical_replication_slot('pg2');
select pg_create_physical_replication_slot('pg3');

HOST=PG2

###########
# as root:
#
systemctl stop postgresql-15
rm -rf /var/lib/pgsql/15/data
#
###########
# as postgres
#
/usr/pgsql-15/bin/pg_basebackup \
    -d 'host=pg1 user=replicant password=mypassword port=5432 application_name=pg2' \
    --wal-method=stream \
    -l basebackup \
    -D /var/lib/pgsql/15/data \
    -R -P -v \
    --slot=pg2

touch $PGDATA/standby.signal

echo "cluster_name = pg2" >> $PGDATA/postgresql.auto.conf
#
###########
# as root
systemctl start postgresql-15

© 2011 - 2023 Percona, Inc.
166
/
240



Synchronous Replication, Cont'd
HOST=PG3

###########
# as root:
#
systemctl stop postgresql-15
rm -rf /var/lib/pgsql/15/data
#
###########
# as postgres
#
/usr/pgsql-15/bin/pg_basebackup \
    -d 'host=pg1 user=replicant password=mypassword port=5432 application_name=pg3' \
    --wal-method=stream \
    -l basebackup \
    -D /var/lib/pgsql/15/data \
    -R -P -v \
    --slot=pg3

touch $PGDATA/standby.signal

echo "cluster_name = pg3" >> $PGDATA/postgresql.auto.conf
#
###########
# as root
systemctl start postgresql-15

© 2011 - 2023 Percona, Inc.
167
/
240



Synchronous Replication, Cont'd
HOST=PG1

# default = on, requires restart
show synchronous_commit;

# requires reload
alter system set synchronous_standby_names='pg2,pg3';
select pg_reload_conf();

# validate
select application_name,state,sync_state from pg_stat_replication order by 1;

 application_name |   state   | sync_state
------------------+-----------+------------
 pg2              | streaming | sync
 pg3              | streaming | potential

Example Alternative Replication Wait Modes

alter system set synchronous_standby_names='FIRST 1 (pg3,pg2)';
alter system set synchronous_standby_names='FIRST 2 (pg3,pg2)';
alter system set synchronous_standby_names='ANY 2 (pg3,pg2)';

© 2011 - 2023 Percona, Inc.
168
/
240



Replication Caveat
Basebackup behaviour: log shipping versus streaming (with and without slots)
Monitor:

PRIMARY:
select * from pg_stat_replication;
select * from pg_replication_slots;
select * from pg_get_replication_slots();

REPLICA: postgres logs
cat <postgres log> | grep -E 'ERROR|FATAL'

Slot administration:
CLI:
pg_receivewal

FUNCTIONS:
pg_drop_replication_slot
pg_copy_physical_replication_slot
pg_create_physical_replication_slot
pg_replication_slot_advance

© 2011 - 2023 Percona, Inc.
169
/
240



Logical Replication
About

A method of replicating data objects and their changes, based upon their replication identity
(usually a primary key). While streaming replication uses exact block addresses, logical
replication is byte-by-byte.

Logical replication uses a publish and subscribe model with one or more subscribers
subscribing to one or more publications on a publisher node. Subscribers pull data from the
publications they subscribe to and may subsequently re-publish data to allow cascading
replication or more complex configurations.

© 2011 - 2023 Percona, Inc.
170
/
240



Logical Replication
Capabilities

UPGRADE: Upgrade PostgreSQL from 9.4 to 9.5, without downtime
SCALE OUT: Copy all or a selection of database tables to other nodes in a cluster
AGGREGATE: Accumulate changes from sharded database servers into a Data Warehouse
INTEGRATE: Feed database changes in real-time to other systems
PROTECT: Provide backup or high availability for clusters, replacing earlier technologies

Method

Logically replicating a table starts with snapshot of the data from the publisher database and
copying that to the subscriber database.

Changes on the publisher are sent to the subscriber real-time and is applied in the same order.

© 2011 - 2023 Percona, Inc.
171
/
240



Logical Replication

© 2011 - 2023 Percona, Inc.
172
/
240



Logical Replication

© 2011 - 2023 Percona, Inc.
173
/
240



Logical Replication
Method

create the database(s)
create two schemas
create and populate table(s)
create the logical node(s)
create replication set(s)
subsribe to provider(s)
peform DML

CREATE PUBLICATION name
    [ FOR TABLE [ ONLY ] table_name [ * ] [, ...]
      | FOR ALL TABLES ]
    [ WITH ( publication_parameter [= value] [, ... ] ) ]

CREATE SUBSCRIPTION subscription_name
    CONNECTION 'conninfo'
    PUBLICATION publication_name [, ...]
    [ WITH ( subscription_parameter [= value] [, ... ] ) ]

© 2011 - 2023 Percona, Inc.
174
/
240



Logical Replication, Example 1
-- host:pg1

drop database if exists db01;
create database db01;
\c db01
alter role postgres with password 'postgres';
create schema a;
create table a.t1(i serial primary key,comments text);
create publication provider1 FOR TABLE a.t1;

-- host:pg3

create database db01;
alter role postgres with password 'postgres';
\c db01
create schema a;
create table a.t1(i serial primary key,comments text);

create subscription mysub
         connection 'host=pg1 port=5432 user=postgres dbname=db01 password=postgres'
        publication provider1
               with (enabled = true);

© 2011 - 2023 Percona, Inc.
175
/
240



Logical Replication, Example 2
export PGUSER=postgres PGPASSWORD=postgres

createdb -h pg1 db02
createdb -h pg3 db02

/usr/pgsql-15/bin/pgbench -h pg1 -i db02

psql 'host=pg1 dbname=db02' -c 'alter table pgbench_history add primary key(tid,bid,aid,delta,mtime);'

pg_dump -s -h pg1 db02 | psql -h pg3 db02

pg1: create PUBLICATION, execute on host pg1, database db02

set search_path=public;
create publication publication1 for all tables;

pg3: create SUBSCRIPTION, execute on host pg3, database db02

create subscription subscript_set1
    connection 'host=pg1 dbname=db02 user=postgres password=postgres'
    publication publication1
        with (copy_data = true, create_slot = true, enabled = true, slot_name = myslot1);

Execute benchmarking on host pg1, database db02

/usr/pgsql-15/bin/pgbench -h pg1 -c 4 -j 2 -T 100 -b tpcb-like db02

© 2011 - 2023 Percona, Inc.
176
/
240



Logical Replication
Caveat

DDLs not supported
No Replication Queue Flush (Failover is problematic)
No Cascaded Replication
One unique index/constraint/pk per table
Permissions (remote access by subscriber)
Primary key must exist
Sequences
Triggers
Truncate command is not propagated
Unlogged/temporary tables not supported

© 2011 - 2023 Percona, Inc.
177
/
240



Connection Pooling
About Connection Pooling

A connection pool is a cache of database connections maintained so that the
connections can be reused when future requests to the database are required.
Connection pools are used to enhance the performance of executing commands on
a database.

Reference: https://en.wikipedia.org/wiki/Connection_pool

About pgbouncer

A lightweight connection pooler for PostgreSQL

Reference: https://www.pgbouncer.org/

© 2011 - 2023 Percona, Inc.
178
/
240

https://en.wikipedia.org/wiki/Connection_pool
https://www.pgbouncer.org/


pgbouncer: Features
Supports pooling policies:

Session pooling: Most polite method. When a client connects, a server connection will
be assigned to it for the whole duration it stays connected. The server connection is
put back into pool when the connection closes.
Transaction pooling: A server connection is assigned to a client only during a
transaction. When PgBouncer notices that the transaction is over, the connection is
put back into the pool.
Statement pooling: The connection is closed and is put back into the pool upon the
completion of a SQL statement.

Low memory requirements, 2 kB per connection
Can alias connection parameters and target hosts and databases. For example, the
destination database can reside on a different host.
Supports online reconfiguration administration capabilities
Supports online restart/upgrade without dropping client connections
Supports multiple authentication protocols and encryption methods

© 2011 - 2023 Percona, Inc.
179
/
240



pgbouncer: Installation
dnf install -y pgbouncer    # CENTOS 8
apt install -y pgbouncer    # Ubuntu
#
systemctl start pgbouncer

[root@pg1 ~]# netstat -tlnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      299/sshd
tcp        0      0 127.0.0.1:5432          0.0.0.0:*               LISTEN      1179/postmaster
tcp        0      0 127.0.0.1:6432          0.0.0.0:*               LISTEN      1192/pgbouncer
tcp6       0      0 :::22                   :::*                    LISTEN      299/sshd
tcp6       0      0 ::1:5432                :::*                    LISTEN      1179/postmaster
tcp6       0      0 ::1:6432                :::*                    LISTEN      1192/pgbouncer

ATTENTION:

Centos/Redhat: pgbouncer process owned by pgbouncer
Ubuntu/Debian: pgbouncer process owned by postgres

© 2011 - 2023 Percona, Inc.
180
/
240



pgbouncer: Configuration
    mv /etc/pgbouncer/pgbouncer.ini /etc/pgbouncer/pgbouncer.ini_backup

Minimal Configuration

echo "
[databases]
* = host=127.0.0.1 port=5432

[users]

[pgbouncer]
logfile = /var/log/pgbouncer/pgbouncer.log
pidfile = /var/run/pgbouncer/pgbouncer.pid
listen_addr = 0.0.0.0
listen_port = 6432

auth_type = plain
auth_file = /etc/pgbouncer/userlist.txt
" > /etc/pgbouncer/pgbouncer.ini

Administrative LOGIN (Redhat/Centos)

[root@pg1 pgbouncer]# su - pgbouncer -c "psql 'host=/tmp port=6432' "
psql (12.6, server 1.15.0/bouncer)
Type "help" for help.

© 2011 - 2023 Percona, Inc.
181
/
240



pgbouncer: Configuration Cont'd
pgbouncer=# show help;
NOTICE:  Console usage
DETAIL:
        SHOW HELP|CONFIG|DATABASES|POOLS|CLIENTS|SERVERS|USERS|VERSION
        SHOW FDS|SOCKETS|ACTIVE_SOCKETS|LISTS|MEM
        SHOW DNS_HOSTS|DNS_ZONES
        SHOW STATS|STATS_TOTALS|STATS_AVERAGES|TOTALS
        SET key = arg
        RELOAD
        PAUSE [<db>]
        RESUME [<db>]
        DISABLE <db>
        ENABLE <db>
        RECONNECT [<db>]
        KILL <db>
        SUSPEND
        SHUTDOWN

© 2011 - 2023 Percona, Inc.
182
/
240



pgbouncer: Configuration Cont'd
ATTENTION:(there's more than one way to setup user login authentication)

authentication settings: any, trust, plain, crypt, md5, cert, hba, pam, auth_query
Ubuntu is easy to configure because pgbouncer is owned by "postgres" while CENTOS
uses Unix user "pgbouncer" therefore pg_hba.conf must be edited for localhost
connections ex: use METHOD "md5".
always set ROLE passwords

© 2011 - 2023 Percona, Inc.
183
/
240



pgbouncer: Configuration Cont'd
EXAMPLE 1: pgbouncer authenticates using "userlist.txt"

;; RECALL
[databases]
* = host=127.0.0.1
auth_type = plain
auth_file = /etc/pgbouncer/userlist.txt

echo '
"postgres" "postgres"
' > /etc/pgbouncer/userlist.txt

[root@pg1 ~]# psql 'host=127.0.0.1 port=6432 user=postgres password=postgres'
psql (12.6)
Type "help" for help.

postgres=#

© 2011 - 2023 Percona, Inc.
184
/
240



pgbouncer: Configuration Cont'd
EXAMPLE 2: pgbouncer host based authentication

/etc/pgbouncer/pgbouncer.ini

[databases]
* = host=127.0.0.1
auth_type = hba
auth_file = /etc/pgbouncer/userlist.txt
auth_hba_file =/etc/pgbouncer/pg_hba.conf

/etc/pgbouncer/userlist.txt

#copy passwords from pg_shadow
echo '
;"postgres" "mypassword"
"postgres" "md50da9ad9e72f4a215ede570b27a736c4a"
"usr1" "md5b1d2240d1ca66a849768e63daae33e05"

; pgbouncer admin login: does not require a pg ROLE
"stats" "mypassword"
' > /etc/pgbouncer/userlist.txt

© 2011 - 2023 Percona, Inc.
185
/
240



pgbouncer: Administration
CENTOS & Ubuntu

# execute as root
systemctl start pgbouncer

CENTOS:

systemctl start pgbouncer
su - pgbouncer -c "psql -U pgbouncer -p 6432"

Ubuntu:

systemctl start pgbouncer
su - postgres -c "psql -U pgbouncer -p 6432"

© 2011 - 2023 Percona, Inc.
186
/
240



PostgreSQL Operations And Troubleshooting

Backups, Redundancy And
Availability

© 2011 - 2023 Percona, Inc.
187
/
240



Backups, Redundancy And Availability
PostgreSQL Command Line Utilities Point In Time Recovery (PITR) ... pg_rewind

Best Practices

Operations and Definitions

Failover/Switchover

© 2011 - 2023 Percona, Inc.
188

/
240



PostgreSQL Command Line Utilities
pg_dumpall
pg_dump
pg_restore
pg_basebackup
pg_upgrade
psql

© 2011 - 2023 Percona, Inc.
189
/
240



pg_dumpall
Can dump/backup all the databases of a cluster into a script file (uses text format).

$ pg_dumpall > /tmp/all_databases_dump.sql

Dump globals using pg_dumpall.

$ pg_dumpall -g > /tmp/globals.sql

Use psql to restore the backup taken using pg_dumpall.

$ psql -f /tmp/all_databases_dump.sql

© 2011 - 2023 Percona, Inc.
190
/
240



pg_dump
Use pg_dump to backup a table (with data)

using custom format

$ pg_dump -Fc -t public.pgbench_history -d percona -f /tmp/pgbench_history

using plain text format

$ pg_dump -t public.pgbench_branches -d percona -f /tmp/pgbench_branches

When you open both the dump files, you see that the dumpfile (/tmp/pgbench_branches) generated
using plain text format is human-readable.

Use pg_dump to backup a database

-- Works in both custom and plain text format
$ pg_dump percona -f /tmp/percona.sql
-- Use -s to take DDL only backup of Percona database
$ pg_dump -s percona -f /tmp/percona_ddl.sql

You cannot take multiple databases backup using pg_dump

© 2011 - 2023 Percona, Inc.
191
/
240



pg_restore
When do we use pg_restore to restore a dumpfile ?

When a dumpfile is generated in custom format using pg_dump, we use pg_restore.
When do we use psql to restore a dumpfile ?

When a dumpfile is generated in plain text format using pg_dump, we use psql.
Use pg_restore to restore the table dump (/tmp/pgbench_history) taken using custom format

-- Create a test database
$ psql -c "CREATE DATABASE testdb"
-- Use pg_restore to restore the dump
$ pg_restore -t pgbench_history -d testdb /tmp/pgbench_history

© 2011 - 2023 Percona, Inc.
192
/
240



pg_basebackup
Used for taking a Consistent File System level backup that can be used for Point-in-time-
recovery or setting up Slaves.
At this point of time, pg_basebackup cannot run in parallel.
pg_basebackup takes a snapshot of the entire Data Directory of PostgreSQL along with the
WALs generated during the backup.
pg_basebackup can be taken remotely from another Instance costing a network bandwidth
at a controlled rate.
You cannot take Incremental and Differential Backups using pg_basebackup.
pg_basebackup uses a Replication Protocol. Which means, you have to allow replication
connections from the user,host combination in the pg_hba.conf to run a pg_basebackup.

© 2011 - 2023 Percona, Inc.
193
/
240



pg_basebackup Cont'd
Usage:
  pg_basebackup [OPTION]...

Options controlling the output:
  -D, --pgdata=DIRECTORY receive base backup into directory
  -F, --format=p|t       output format (plain (default), tar)
  -r, --max-rate=RATE    maximum transfer rate to transfer data directory
                         (in kB/s, or use suffix "k" or "M")
  -R, --write-recovery-conf
                         write configuration for replication
  -T, --tablespace-mapping=OLDDIR=NEWDIR
                         relocate tablespace in OLDDIR to NEWDIR
      --waldir=WALDIR    location for the write-ahead log directory
  -X, --wal-method=none|fetch|stream
                         include required WAL files with specified method
  -z, --gzip             compress tar output
  -Z, --compress=0-9     compress tar output with given compression level

General options:
  -c, --checkpoint=fast|spread
                         set fast or spread checkpointing
  -C, --create-slot      create replication slot
  -l, --label=LABEL      set backup label
  -n, --no-clean         do not clean up after errors
  -N, --no-sync          do not wait for changes to be written safely to disk
  -P, --progress         show progress information
  -S, --slot=SLOTNAME    replication slot to use
  -v, --verbose          output verbose messages
  -V, --version          output version information, then exit
      --no-slot          prevent creation of temporary replication slot
      --no-verify-checksums
                         do not verify checksums
  -?, --help             show this help, then exit© 2011 - 2023 Percona, Inc.

194
/
240



pg_basebackup Cont'd
Run the following command that helps you take a backup to /tmp/first_backup directory.

$ pg_basebackup -U postgres -p 5432 -h 127.0.0.1 -D /tmp/first_backup \
-Ft -z -Xs -P -R -l backup_label

Once finished with the backup, see what is stored in the directory specified for backup.

$ ls -l /tmp/first_backup
total 8060
-rw-------. 1 postgres postgres 8231974 Dec 14 00:22 base.tar.gz
-rw-------. 1 postgres postgres   17647 Dec 14 00:22 pg_wal.tar.gz

Now, extract the backup and see what is recorded in the file : backup_label

$ mkdir -p /tmp/data
$ tar -xzf /tmp/first_backup/base.tar.gz -C /tmp/data
$ cat /tmp/data/backup_label
START WAL LOCATION: 0/8000028 (file 000000010000000000000008)
CHECKPOINT LOCATION: 0/8000060
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2018-12-14 00:21:58 UTC
LABEL: backup_label
START TIMELINE: 1

© 2011 - 2023 Percona, Inc.
195
/
240



pg_upgrade
pg_upgrade allows data stored in PostgreSQL data files to be upgraded to a later
PostgreSQL major version without the data dump/restore typically required for major
version upgrades.
Major PostgreSQL releases regularly add new features that often change the layout of the
system tables, but the internal data storage format rarely changes. The community will
attempt to avoid such situations.
pg_upgrade supports upgrades from 9.2.X and later to the current major release of
PostgreSQL, including snapshot and beta releases.

© 2011 - 2023 Percona, Inc.
196
/
240



pg_upgrade Cont'd
Usage:
  pg_upgrade [OPTION]...

Options:
  -b, --old-bindir=BINDIR       old cluster executable directory
  -B, --new-bindir=BINDIR       new cluster executable directory (default
                                same directory as pg_upgrade)
  -c, --check                   check clusters only, don't change any data
  -d, --old-datadir=DATADIR     old cluster data directory
  -D, --new-datadir=DATADIR     new cluster data directory
  -j, --jobs=NUM                number of simultaneous processes or threads to use
  -k, --link                    link instead of copying files to new cluster
  -N, --no-sync                 do not wait for changes to be written safely to disk
  -o, --old-options=OPTIONS     old cluster options to pass to the server
  -O, --new-options=OPTIONS     new cluster options to pass to the server
  -p, --old-port=PORT           old cluster port number (default 50432)
  -P, --new-port=PORT           new cluster port number (default 50432)
  -r, --retain                  retain SQL and log files after success
  -s, --socketdir=DIR           socket directory to use (default current dir.)
  -U, --username=NAME           cluster superuser (default "postgres")
  -v, --verbose                 enable verbose internal logging
  -V, --version                 display version information, then exit
  --clone                       clone instead of copying files to new cluster
  -?, --help                    show this help, then exit

Before running pg_upgrade you must:
  create a new database cluster (using the new version of initdb)
  shutdown the postmaster servicing the old cluster
  shutdown the postmaster servicing the new cluster

EXAMPLE:
  pg_upgrade -d oldCluster/data -D newCluster/data -b oldCluster/bin -B newCluster/bin

© 2011 - 2023 Percona, Inc.
197
/
240



Best Practices
dump & restore

try to always use superuser (less hassle)
copy&paste/scripting
version redundancy (copies)
in regards to dumps

compressed vs uncompressed (speed,size)
sections vs complete
assigning role ownership & granting permissions
recreating

relations
database

in regards to restorations
compression required
multi-threaded (speed)
incrementally controlled restorations (manifests)

© 2011 - 2023 Percona, Inc.
198
/
240



Best Practices Cont'd
dumping and archiving

pg_dumpall -g
pg_dump

cycling across datacluster
diffs

complex restorations
via schema or sections
manifests
advantages of piping & paging

building out gradually
double check before committing

dump & restore across different versions
examples

ex 1: pg_dump -Fp | psql
ex 2: pg_dump -Fc | pg_restore
ex 3: pg_dump -Fc | pg_restore -l > manifest.ini
ex 4: pg_dump -Fc | pg_restore -j 3 -L manifest.ini

© 2011 - 2023 Percona, Inc.
199
/
240



Operations And Definitions
Failover: the ability to seamlessly and automatically switch from a failed
PRIMARY node to a reliable STANDBY by means of a system promotion

Switchover: similar to a Failover except that the PRIMARY has not failed, rather
it is a controlled promotion. Mean while the PRIMARY can be brought down
under control and optionally reprovisioned as a new REPLICA node.

Failback: A controlled Switchover returning read-write duties to a REPLICA that
was formerly the PRIMARY node in the cluster.

© 2011 - 2023 Percona, Inc.
200
/
240



Service Failover/SwitchOver
CENTOS: pg_ctl -D [PGDATA] (action)

pg_ctl -D $PGDATA promote
Debian/Ubuntu: pg_ctlcluster (version) (cluster) (action)

pg_ctlcluster 12 main promote

Caveat

pg_ctl: run as postgres
pg_ctlcluster: run as either postgres or root (but it should be root)

© 2011 - 2023 Percona, Inc.
201
/
240



Point-In-Time-Recovery (PITR)
About PITR

Archive Recovery Settings

restore_command
archive_cleanup_command
recovery_end_command

Recovery Target Settings

recovery_target
recovery_target_name
recovery_target_time
recovery_target_xid
recovery_target_lsn
recovery_target_inclusive
recovery_target_timeline
recovery_target_action

© 2011 - 2023 Percona, Inc.
202
/
240



Point-In-Time-Recovery (PITR) Cont'd
pgbackrest

Install packages

#
# CENTOS
#
dnf update -y
dnf install -y epel-release
dnf install -y pgbackrest
updatedb

mkdir -p /var/log/pgbackrest/
chown postgres.postgres /var/log/pgbackrest/

Edit pgbackrest.conf

#
# vi /etc/pgbackrest.conf
#
[global]
repo1-path=/var/lib/pgsql/15/backups

[main]
pg1-path=/var/lib/pgsql/15/data

© 2011 - 2023 Percona, Inc.
203
/
240



Point-In-Time-Recovery (PITR) Cont'd
Update archive_command: (localhost --> push)

#
# no restart necesary if archive_mode is already "on"
#   archive_command='/bin/true'
#
system set archive_mode='on'
alter system set archive_command = 'pgbackrest --stanza=main archive-push %p';
select pg_reload_conf();

Commands

# create a stanza called "main"
pgbackrest --stanza=main --log-level-console=info stanza-create

# test the integrity of the setup
# note: if it doesn't work, you must also review the postgres configuration.
pgbackrest check --stanza=main --log-level-console=info

#
# BACKUP: useful for major backups i.e. execute a cron job once a week
#         default location is /var/lib/pgbackrest
#
pgbackrest backup --stanza=main --log-level-console=info --repo1-retention-full=2

#
# DIFF: useful for incremental, daily backups i.e. execute as a cron job every day
# an argument has been added controlling the number of backups retained
#
pgbackrest backup --stanza=main --log-level-console=info --repo1-retention-full=2 --type=diff

© 2011 - 2023 Percona, Inc.
204
/
240



Point-In-Time-Recovery (PITR) Cont'd
References And Resources

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-
WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-
WAL-RECOVERY-TARGET
https://pgbackrest.org/
https://www.percona.com/blog/

© 2011 - 2023 Percona, Inc.
205
/
240

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-ARCHIVE-RECOVERY
https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY-TARGET
https://pgbackrest.org/
https://www.percona.com/blog/


About pg_rewind

© 2011 - 2023 Percona, Inc.
206
/
240



About pg_rewind
pg_rewind resynchronizes a PostgreSQL cluster
          with another copy of the cluster.

Usage:
  pg_rewind [OPTION]...

Options:
  -D, --target-pgdata=DIRECTORY  existing data directory to modify
      --source-pgdata=DIRECTORY  source data directory to synchronize with
      --source-server=CONNSTR    source server to synchronize with
  -n, --dry-run                  stop before modifying anything
  -N, --no-sync                  do not wait for changes to be written
                                 safely to disk
  -P, --progress                 write progress messages
      --debug                    write a lot of debug messages
  -V, --version                  output version information, then exit
  -?, --help                     show this help, then exit

© 2011 - 2023 Percona, Inc.
207
/
240



pg_rewind: Example
Steps

Start with a 2 node Replication Cluster i.e. pg1, pg2
Confirm postgres runtime parameters are set
Promote STANDBY, pg2
Shut down and deprecate PRIMARY, pg1
Confirm pg1 is in condition to be provisioned as a new REPLICA
Perform pg-rewind dry run
Execute pg_rewind and reprovision pg1 as a new STANDBY
Update datacluster on pg1

edit postgresql.auto.conf
touch standby.signal

Start pg1 and validate

© 2011 - 2023 Percona, Inc.
208
/
240



pg_rewind: Example Cont'd
-- PG1: execute as required on pg1 BEFORE creating REPLICA(s)
alter role postgres with password 'postgres';
alter system set listen_addresses = '*';
alter system set wal_log_hints = 'on'
alter system set wal_keep_size = 100;

# PG2:create REPLICA, can be with/without slots
/usr/bin/pg_basebackup -d 'host=pg1 user=postgres password=postgres port=5432' \
                      --wal-method=stream \
                       -l basebackup \
                       -D $PGDATA \
                       -R -P -v \
                      --slot=pg2
touch $PGDATA/standby.signal

-- PG2 promote new PRIMARY
select pg_promote();
-- create new slot on new PRIMARY, pg2, and validate
select * from pg_create_physical_replication_slot('pg1');
select * from pg_get_replication_slots();

# PG1 TIP: try adding or removing objects AFTER pg2 promotion to make it interesting
systemctl stop postgresql-15

© 2011 - 2023 Percona, Inc.
209
/
240



pg_rewind: Example Cont'd
# PG1: TIP, test first by using '--dryrun'
/usr/pgsql-15/bin/pg_rewind \
    --target-pgdata /var/lib/pgsql/15/data \
    --source-server='user=postgres password=postgres host=pg2'

# PG1: edit/update postgresql.auto.conf
echo "
primary_conninfo = 'user=postgres password=postgres host=pg2 port=5432'
primary_slot_name = 'pg1'
recovery_target_timeline = 'latest'
wal_log_hints = 'on'
" >> $PGDATA/postgresql.auto.conf

# add standby file
touch $PGDATA/standby.signal

# PG1
systemctl start postgresql-15

© 2011 - 2023 Percona, Inc.
210
/
240



PostgreSQL Operations And Troubleshooting

Patroni

© 2011 - 2023 Percona, Inc.
211
/
240



Patroni
About
Scenario
Installation
Configuration
Administration
Callbacks

© 2011 - 2023 Percona, Inc.
212
/
240



Patroni: About
Patroni is a template for you to create your own customized, high-availability solution using
Python and - for maximum accessibility - a distributed configuration store like ZooKeeper, etcd,
Consul or Kubernetes. Database engineers, DBAs, DevOps engineers, and SREs who are looking
to quickly deploy HA PostgreSQL in the datacenter-or anywhere else-will hopefully find it useful.

We call Patroni a “template” because it is far from being a one-size-fits-all or plug-and-play
replication system. It will have its own caveats. Use wisely. There are many ways to run high
availability with PostgreSQL; for a list, see the PostgreSQL Documentation.

REFERENCES:

https://patroni.readthedocs.io/en/latest/index.html
https://patroni.readthedocs.io/en/latest/SETTINGS.html#settings
https://github.com/zalando/patroni

© 2011 - 2023 Percona, Inc.
213
/
240



Patroni: About

© 2011 - 2023 Percona, Inc.
214
/
240



Patroni: Installation
Scenario

Clean up and verify RPM packages are properly installed

Initialize a datacluster in a non-standard location on a single postgres host, pg1. Keep in
mind that the systemd unit files must be updated on all postgres servers taking into
consideration the non-standard location of the datacluster.

Install a single instance of the ETCD discovery service on HOST "etcd" (192.168.2.221)

Install Patroni on each host i.e. pg1, pg2, pg3.

Configure and test ETCD on 192.168.2.221

Configure Patroni

Create a patroni managed cluster with pg1 as a single member to this cluster.

Add new nodes to the cluster i.e. pg2 and pg3 respectively.

© 2011 - 2023 Percona, Inc.
215
/
240



Patroni: Installation Cont'd
CENTOS 8

# validate packages are installed i.e. pg1, pg2, pg3
dnf install -y epel-release
dnf install -y patroni-etcd

# shutdown all services i.e. pg1, pg2, pg3
systemctl stop postgresql-15

# delete all dataclusters i.e. pg1, pg2, pg3
rm -rf /var/lib/pgsql/15/data /mnt/pg/15

© 2011 - 2023 Percona, Inc.
216
/
240



Patroni: Installation Cont'd
Initialize Primary Host

# perform on all three hosts: pg1, pg2, pg3
mkdir -p /mnt/pg
chown postgres.postgres /mnt/pg

# perform only on pg1
export PGSETUP_INITDB_OPTIONS="--auth-local=peer --auth-host=md5 --pgdata=/mnt/pg/15/data"

/usr/pgsql-15/bin/postgresql-15-setup initdb

© 2011 - 2023 Percona, Inc.
217
/
240



Patroni: Configuration Cont'd
pg_hba.conf

# perform only on host pg1
echo "

# appended rules
host    all             all             0.0.0.0/0               md5
host    all             all             ::0/0                   md5
host    replication     all             0.0.0.0/0               md5
host    replication     all             ::0/0                   md5
" >> /mnt/pg/15/data/pg_hba.conf

echo "listen_addresses = '*' " >> /mnt/pg/15/data/postgresql.auto.conf

© 2011 - 2023 Percona, Inc.
218
/
240



Patroni: Configuration Cont'd
Create systemd unit override file on pg1, pg2, pg3

systemctl edit postgresql-15

[Service]
# Location of database directory
Environment=PGDATA=/mnt/pg/15/data/

Update systemd environment

systemctl daemon-reload

© 2011 - 2023 Percona, Inc.
219
/
240



Patroni: Configuration Cont'd
Create & Validate ROLES

# Service start
systemctl start postgresql-15

-- Update ROLES
alter role postgres with password 'postgres';
create role replicant with replication login password 'mypassword';
alter system set listen_addresses='*';

postgres=# select usename, passwd from pg_shadow;
  usename   |               passwd
------------+-------------------------------------
 postgres   | md53175bce1d3201d16594cebf9d7eb3f9d
  replicant | md5361fea8a0a5cfbaf3341cc407b96dfcc

postgres=# \du
                                    List of roles
 Role name  |                         Attributes                         | Member of
------------+------------------------------------------------------------+-----------
 postgres   | Superuser, Create role, Create DB, Replication, Bypass RLS | {}
  replicant | Replication                                                | {}

# Service stop
systemctl stop postgresql-15

© 2011 - 2023 Percona, Inc.
220
/
240



Patroni: Configuration Cont'd
HOST etcd (192.168.2.221, installed on CENTOS 7!)

# HOST: ETCD (installed on CENTOS 7!)
yum install -y etcd

# HOST: ETCD
#
# vi /etc/etcd/etcd.conf
#
ETCD_NAME=etcd
ETCD_INITIAL_CLUSTER="etcd=http://192.168.2.221:2380"
ETCD_INITIAL_CLUSTER_STATE="new"
ETCD_INITIAL_CLUSTER_TOKEN="patroni-token"
ETCD_INITIAL_ADVERTISE_PEER_URLS="http://192.168.2.221:2380"
ETCD_DATA_DIR="/var/lib/etcd/postgres.etcd"
ETCD_LISTEN_PEER_URLS="http://192.168.2.221:2380"
ETCD_LISTEN_CLIENT_URLS="http://192.168.2.221:2379,http://localhost:2379"
ETCD_ADVERTISE_CLIENT_URLS="http://192.168.2.221:2379"
ETCD_ENABLE_V2="true"

# ETCD
systemctl start etcd

etcdctl member list
8d6e29b24fd57235: name=patroni peerURLs=http://192.168.2.221:2380 clientURLs=http://192.168.2.221:2379 isLeader=true

© 2011 - 2023 Percona, Inc.
221
/
240



Patroni: Installation
Install Patroni packages on all postgres servers

# CENTOS 8: PG1, PG2, PG3
dnf install -y patroni-etcd

© 2011 - 2023 Percona, Inc.
222
/
240



Patroni: Configuration Cont'd
Configuration "patroni.yml": host pg1

mkdir -p /etc/patroni/
vi /etc/patroni/patroni.yml
chown postgres.postgres /etc/patroni/patroni.yml
chmod 600 /etc/patroni/patroni.yml

ATTENTION:

ETCD has been provisioned only on host "etcd"
patroni.yml: IP addresses are edited for each file on each host i.e. pg1, pg2, pg3
SECURITY RISK: You should set permissions on "/etc/patroni/patroni.yml" to 600

© 2011 - 2023 Percona, Inc.
223
/
240



Patroni: Configuration Cont'd
Configuration "patroni.yml": host pg1, cont'd
#
# mkdir -p /etc/patroni/
# vi /etc/patroni/patroni.yml
# chown postgres.postgres /etc/patroni/patroni.yml
#

scope: pgcluster
name: pg1
#name: pg2
#name: pg3

restapi:
  listen: 0.0.0.0:8008
  connect_address: 192.168.2.11:8008
# connect_address: 192.168.2.12:8008       #pg2
# connect_address: 192.168.2.13:8008       #pg3

etcd:
  host: 192.168.2.221:2379
# host: etcd:2379                          # pg2, pg3 points to the same ETCD service

© 2011 - 2023 Percona, Inc.
224
/
240



Patroni: Configuration Cont'd
Configuration "patroni.yml": host pg1, cont'd
bootstrap:
  dcs:
    ttl: 30
    loop_wait: 10
    retry_timeout: 10
    maximum_lag_on_failover: 1048576
    synchronous_mode: false
    postgresql:
      use_pg_rewind: true
      use_slots: true
      parameters:
        wal_level: replica
        hot_standby: "on"
        wal_keep_size: 20
        max_wal_senders: 5
        max_replication_slots: 5
        wal_log_hints: "on"
        archive_mode: "on"
        archive_command: "/bin/true"
  initdb:
  - encoding: UTF8
  pg_hba:
  - host replication replicant 127.0.0.1/32 trust
  - host replication replicant 0.0.0.0/0 md5
  - host replication replicant ::0/0 md5
  - host all all 0.0.0.0/0 md5
  - host all all ::0/0 md5
  users:
    admin:
      password: admin
      options:
        - createrole
        - createdb

© 2011 - 2023 Percona, Inc.
225
/
240



Patroni: Configuration Cont'd
Configuration "patroni.yml": host pg1, cont'd
postgresql:
  listen: 0.0.0.0:5432
  connect_address: 192.168.2.11:5432
# connect_address: 192.168.2.12:5432       # pg2
# connect_address: 192.168.2.13:5432       # pg3
  data_dir: /mnt/pg/15/data/
# data_dir: /var/lib/pgsql/15/data
  bin_dir: /usr/pgsql-15/bin
  pgpass: /tmp/pgpass0
  authentication:
    replication:
      username: replicant
      password: mypassword
    superuser:
      username: postgres
      password: postgres
    rewind:
      username: postgres
      password: postgres
  callbacks:
    on_reload: /etc/patroni/callback.sh
    on_restart: /etc/patroni/callback.sh
    on_role_change: /etc/patroni/callback.sh
    on_start: /etc/patroni/callback.sh
    on_stop: /etc/patroni/callback.sh
  parameters:
    unix_socket_directories: "/var/run/postgresql/"
tags:
  nofailover: false
  noloadbalance: false
  clonefrom: false
  nosync: false

© 2011 - 2023 Percona, Inc.
226
/
240



Patroni: Configuration Cont'd
Configuration "callback.sh": host pg1

#!/bin/bash

#
# vi /etc/patroni/callback.sh
# chmod 777 /etc/patroni/callback.sh
#
echo "$(date): $1, $2, $3; callback invoked" > /tmp/patroni_callback.tmp

© 2011 - 2023 Percona, Inc.
227
/
240



Patroni: Configuration Cont'd
Testing And Validation

# anything amiss will be reported immediately
su - postgres -c "/usr/bin/patroni --validate-config /etc/patroni/patroni.yml"

# this will execute a basebackup
su - postgres -c "/usr/bin/patroni /etc/patroni/patroni.yml"

Caveat

inspect the datacluster and look for ...
file permissions
file ownerships ex: root
presence of udesired files ex: standby.signal

© 2011 - 2023 Percona, Inc.
228
/
240



Patroni
Administration

about "patronictl"
configuration files
status
maintenance mode
switchover
failover
decommision
provisioning, add standby
provisioning, reinitialize node

© 2011 - 2023 Percona, Inc.
229
/
240



Patroni
patronictl -c /etc/patroni/patroni.yml --​help

Usage: patronictl [OPTIONS] COMMAND [ARGS]...
Options:
  -c, --config-file TEXT  Configuration file
  -d, --dcs TEXT          Use this DCS
  -k, --insecure          Allow connections to SSL sites without certs
  --help                  Show this message and exit.

Commands:
  configure    Create configuration file
  dsn          Generate a dsn for the provided member,...
  edit-config  Edit cluster configuration
  failover     Failover to a replica
  flush        Discard scheduled events
  history      Show the history of failovers/switchovers
  list         List the Patroni members for a given Patroni
  pause        Disable auto failover
  query        Query a Patroni PostgreSQL member
  reinit       Reinitialize cluster member
  reload       Reload cluster member configuration
  remove       Remove cluster from DCS
  restart      Restart cluster member
  resume       Resume auto failover
  scaffold     Create a structure for the cluster in DCS
  show-config  Show cluster configuration
  switchover   Switchover to a replica
  topology     Prints ASCII topology for given cluster
  version      Output version of patronictl command or a...

© 2011 - 2023 Percona, Inc.
230
/
240



Patroni
Configuration Files

INSTALLED

Patroni:
/etc/patroni/patroni.yml

PostgreSQL:
pg_hba.conf
postgresql.base.conf
postgresql.conf
postgresql.auto.conf

© 2011 - 2023 Percona, Inc.
231
/
240



Patroni
Status Test, Return State Of Hosts

pg1: standby
pg2: standby
pg3: primary
.
systemctl status patroni                    # active
systemctl status postgresql@12-main         # dead, controlled by patroni
pg_lsclusters                               # active
.

patronictl -c /etc/patroni/patroni.yml list
.
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | running |  4 |         0 |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  4 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  4 |           |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
TIP, in case you get garbage on your terminal: export LC_ALL="en_US.UTF-8" 232

/
240



Patroni
Maintenance Mode Test, Turn On And Off A Pg Server

# PAT01: execute as postgres
patronictl -c /etc/patroni/patroni.yml pause
.
pg_ctlcluster 12 main stop
.
pg_lsclusters

Ver Cluster Port Status        Owner    Data directory              Log file
12  main    5432 down,recovery postgres /var/lib/postgresql/15/main /var/log/postgresql/postgresql-15-main.log

patronictl -c /etc/patroni/patroni.yml list

+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | stopped |    |   unknown |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  4 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  4 |           |

# PAT01: execute as postgres
pg_ctlcluster 12 main start

© 2011 - 2023 Percona, Inc.
233
/
240



Patroni
Maintenance Mode Test Cont'd

systemctl stop patroni
.
ps aux|grep patroni
root     32282  0.0  0.0   4968   824 pts/2    S+   15:22   0:00 grep patroni
.
patronictl -c /etc/patroni/patroni.yml list

    + Cluster: 12-main (6880906500246265532) -------+----+-----------+
|     Member     |     Host    | Role |  State  | TL | Lag in MB |
+----------------+-------------+------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |      | running |  4 |         0 |
| CSGB-F1T-PAT02 | 10.10.0.242 |      | running |  4 |         0 |
+----------------+-------------+------+---------+----+-----------+
Maintenance mode: on
.
systemctl start patroni
.
ps aux|grep patroni
postgres 32331  5.6  0.8 422296 34692 ?        Ssl  15:24   0:00 /usr/bin/python3 /usr/bin/patroni /etc/patroni/patroni.yml
root     32348  0.0  0.0   4968   888 pts/2    S+   15:24   0:00 grep patroni
.
patronictl -c /etc/patroni/patroni.yml resume
.
patronictl -c /etc/patroni/patroni.yml list

+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | running |  4 |         0 |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  4 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  4 |           |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
234
/
240



Patroni
Switchover Test, Promote Standby To Primary

patronictl -c /etc/patroni/patroni.yml switchover \
            --master CSGB-F1T-PAT03 --candidate CSGB-F1T-PAT01
.
When should the switchover take place (e.g. 2020-12-02T16:28 )  [now]:
Current cluster topology
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | running |  4 |         0 |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  4 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  4 |           |
+----------------+-------------+--------+---------+----+-----------+
.
Are you sure you want to switchover cluster 12-main, demoting current master CSGB-F1T-PAT03? [y/N]: y
2020-12-02 15:28:33.10437 Successfully switched over to "CSGB-F1T-PAT01"
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 | Leader | running |  4 |           |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  4 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 |        | stopped |    |   unknown |
+----------------+-------------+--------+---------+----+-----------+
.
postgres@CSGB-F1T-PAT01:~$ patronictl -c /etc/patroni/patroni.yml list
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 | Leader | running |  5 |           |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  5 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 |        | running |  5 |         0 |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
235
/
240



Patroni
Automated Failover Test, Shutdown Primary

# PAT01: execute as root
systemctl stop patroni
.
patronictl -c /etc/patroni/patroni.yml list
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | stopped |    |   unknown |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  6 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  6 |           |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
236
/
240



Patroni
Decommision Test, Remove Failed Standby

patronictl -c /etc/patroni/patroni.yml remove CSGB-F1T-PAT01
.
patronictl -c /etc/patroni/patroni.yml list
.
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  6 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  6 |           |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
237
/
240



Patroni
Provisioning Test, Add Standby

# PAT01: execute as root
systemctl start patroni
#
patronictl -c /etc/patroni/patroni.yml list
.
root@CSGB-F1T-PAT01:/var/log/postgresql# patronictl -c /etc/patroni/patroni.yml list
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | running |  6 |         0 |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  6 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  6 |           |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
238
/
240



Patroni
Provisioning Test, Reinitialize Node I.E. Pat02

# PAT02: execute from any node
patronictl -c /etc/patroni/patroni.yml reinit --help
#
patronictl -c /etc/patroni/patroni.yml reinit --wait --force 12-main CSGB-F1T-PAT02
#
Success: reinitialize for member CSGB-F1T-PAT02
Waiting for reinitialize to complete on: CSGB-F1T-PAT02
Reinitialize is completed on: CSGB-F1T-PAT02
.
patronictl -c /etc/patroni/patroni.yml list
+ Cluster: 12-main (6880906500246265532) ---------+----+-----------+
|     Member     |     Host    |  Role  |  State  | TL | Lag in MB |
+----------------+-------------+--------+---------+----+-----------+
| CSGB-F1T-PAT01 | 10.10.0.241 |        | running |  6 |         0 |
| CSGB-F1T-PAT02 | 10.10.0.242 |        | running |  6 |         0 |
| CSGB-F1T-PAT03 | 10.10.0.243 | Leader | running |  6 |           |
+----------------+-------------+--------+---------+----+-----------+

© 2011 - 2023 Percona, Inc.
239
/
240



Questions?

© 2011 - 2023 Percona, Inc.
v20210305 240

/
240


