
Tutorial: create AQMS postgreSQL database

Section 1. PostgreSQL server installation and configuration
Install the latest stable PostgreSQL database server + PostGIS extensions and psql client
Configure database user authentication methods and enable TCP/IP connections for the server.

Connecting to the database server as postgres

Section 2. Build and install custom AQMS extension

Section 3. Create AQMS database users and schema
Optional: Create Tablespaces
Generate customized sql scripts
Create database, activate PostGIS extensions, create roles, users, schema
Create sequences, tables, views, stored functions

Section 4. Load required meta-data
Overview
Meta-data

Appendices
Appendix A: List of individual steps

Customize
Create database
Activate PostGIS extension
Create roles
Create roles with login (users), schemas, grant privs, set search_paths
Create sequences and grant privileges
Create database tables and grant privileges
Create database views
Load stored procedures

Appendix B: psql cheat sheet
Connecting to the database server as postgres (assuming peer authentication)
Connecting to specific database as a specific database user (role) with a password

Section 1. PostgreSQL server installation and configuration

Install the latest stable PostgreSQL database server + PostGIS extensions
and psql client
Before you install the database server, create a “postgres” linux user that will run the database server, this user
does not need a login. On Ubuntu, the installation process does this automatically.

Follow the instructions on how to add the PostgreSQL code repositories to your local package management
system so you can easily get the latest version of PostgreSQL, look at the instructions for binary distributions:

https://www.postgresql.org/download/

If you are concerned about adding the official PostgreSQL code repositories to your yum or apt list of trusted
repos, don’t be. You’ll make your life a lot easier to just use the PostgreSQL repos.

You will need to install the database as root or by using sudo .

On Ubuntu, you can then install postgreSQL using apt-get, on RedHat style Linux you would use yum.

We will be using the PostGIS extension, which is also available through the PostgreSQL repo.

For example, at the time of this writing, to get the latest PostgreSQL (10) and the latest PostGIS (2.4):

CentOS7:

● Add yum repository for 10:

yum install /10/redhat/rhel-7-x86_64/pgdg-centos10-10-2.noarch.rpm

● Install PostgreSQL:
yum install postgresql10 postgresql10-server postgresql10-contrib

● Install PostGIS:
yum install postgis2_10

http://www.postgresonline.com/journal/archives/362-An-almost-idiots-guide-to-install-PostgreSQL-9.5,-PostGIS
-2.2-and-pgRouting-2.1.0-with-Yum.html

● Optionally initialize the database and enable automatic start:

1

https://www.postgresql.org/download/
http://www.postgresonline.com/journal/archives/362-An-almost-idiots-guide-to-install-PostgreSQL-9.5,-PostGIS-2.2-and-pgRouting-2.1.0-with-Yum.html
http://www.postgresonline.com/journal/archives/362-An-almost-idiots-guide-to-install-PostgreSQL-9.5,-PostGIS-2.2-and-pgRouting-2.1.0-with-Yum.html

/usr/pgsql-10/bin/postgresql-10-setup initdb

systemctl enable postgresql-10

systemctl start postgresql-10

Configure database user authentication methods and enable TCP/IP
connections for the server.
PostgreSQL typically assumes that the linux user name is the same as the database user name. However, the
AQMS model is that we use special database users instead. This means we have to change the default
authentication method, except for the superuser postgres. Also, by default TCP/IP connections are not
enabled, so that also needs to be changed.

● Edit the pg_hba.conf file (located in the same directory as the postgresql.conf file), change “peer” to
“md5” for all lines *except* the line localhost all postgres peer (unless you set up a password for user
postgres). md5 is a simple password authentication method.

local all postgres peer

local all all md5

host all all localhost md5

host all all 127.0.0.1/32 md5

● Edit the postgresql.conf file to enable TCP/IP connections from localhost as well as outside.

Uncomment the line:

#listen_addresses = 'localhost' # what IP address(es) to listen on;

and add the machine’s IP address to the list, e.g.:

listen_addresses = 'localhost, 172.25.16.5' # what IP address(es) to listen on;

● Restart the database server, e.g.
○ /usr/lib/postgresql/9.6/bin/pg_ctl -D /var/lib/postgresql/9.6/main restart (Ubuntu)
○ /usr/pgsql-9.6/bin/pg_ctl restart -D /var/lib/pgsql/9.6/data/ (CentOS7)

>> MTH: This does not work for me: /var/lib/pgsql/10/data is owned by user postgres.
>> Nor can I use sudo since root cannot start/own the postgres process
>> The only way I could find to do this was:
sudo systemctl stop postgresql-10
sudo systemctl start postgresql-10
Now I can see that it was started with the correct data dir:
mth@localhost> ps -ef|grep postgr
postgres 16056 1 1 12:24 ? 00:00:00 /usr/pgsql-10/bin/postmaster -D
/var/lib/pgsql/10/data/
Or maybe I could’ve done

2

>sudo su postgres
And then run the command

Of course you can use other authentication methods if you want, see the PostgreSQL documentation. Also, if
you do that, you will probably need to change some of the scripts and possibly also AQMS configuration files.

Connecting to the database server as postgres
sudo su postgres
If the localhost log-in authentication for user postgres in the pg_hba.conf file is “peer” (default), which means
that the linux username has to match the database username and it does not need a password. You can
choose to use a different authentication (see next section), however, here we’ll assume that you are now user
postgres and that the authentication method is “peer”.

psql

If you have several PostgreSQL servers running, you can specify the port that you would like to use, for
example (default PostgreSQL port is 5432):

psql --port=5433

Section 2. Build and install custom AQMS extension
Do this also as root user, or use sudo .

Obtain libmseed from here: https://github.com/iris-edu/libmseed/releases and install it in a directory, let’s call it
MSEEDDIR.

cd MSEEDDIR

make shared

Checkout the following directory from the CISN repository and let’s put it in a directory name DBpg:

svn checkout

svn+ssh://svn@vault.gps.caltech.edu/cisn/DB/branches/uw-dev-branch/DBpg

cd DBpg/create/postgresql-extension

Edit the Makefile and make sure the variable MSEEDDIR points to the directory containing the libmseed
objects (MSEEDDIR from before). After run make and make install, the AQMSpg_ext.so will be installed in
/usr/local/lib:

3

https://github.com/iris-edu/libmseed/releases

Make

>> MTH: AQMSpg_ext.c:9:22: fatal error: postgres.h: No such file or directory

Missing all the required postgres headers !!

make install

Section 3. Create AQMS database users and schema
Do the rest of this tutorial as linux user postgres

Checkout the following directory from the CISN repository:
svn+ssh://svn@ vault.gps.caltech.edu/cisn/DB/branches/uw-dev-branch/DBpg .

In the following, make sure to do things in this particular order!

Optional: Create Tablespaces
For development or small databases it is not necessary to create tablespaces, skip this part.
For more documentation: https://www.postgresql.org/docs/current/manage-ag-tablespaces.html

Generate customized sql scripts
Note: this procedure also creates a password-file so that you can run subsequent sql-scripts without having to
input a password. However, after you are done with the database work, you may want to remove that file (in
~postgres, which on Ubuntu is in /var/lib/postgresql) depending on how secure your host machine is.

1. cd DBpg/create

2. Edit the file “pg.env ” and replace the default values for the variables where needed, make sure to
save as plain text. This is a very important step, read the comments inside the file carefully!

3. To put values of variables defined in pg.env into the appropriate sql-scripts, run:
./generate_sql_scripts.sh

Create database, activate PostGIS extensions, create roles, users, schema
In DBpg/create:

1. sudo su postgres

2. ./run_as_postgres.sh

This script will prompt several times whether you want to continue, skip a step, or exit. You can safely do a
step twice, but you’ll get some error messages (for example: ERROR: database "rtdb2" already exists).

List of actions this script does:

4

http://vault.gps.caltech.edu/cisn/DB/branches/uw-dev-branch/DBpg

echo "--> Creating AQMS database $DBNAME..."

echo "--> Activating PostGIS extensions in database $DBNAME as user postgres..."

echo "--> Creating database roles as user postgres..."

echo "--> Creating database users and schemas, and setting user search_path in $DBNAME as user

postgres..."

NOTE, at least on ubuntu, if you get this error message:
ERROR: could not load library "/usr/lib/postgresql/9.5/lib/postgis-2.2.so": /usr/lib/liblwgeom-2.2.so.5: undefined
symbol: GEOSDelaunayTriangulation

you probably have an old version of libgeos installed somewhere, you need version 3.4+ , which was installed
as a dependency. Remove the offending old version and re-run the script to re-try the “Activating PostGIS
extensions” and subsequent steps.

Create sequences, tables, views, stored functions
After you have created the database and activated the PostGIS extensions for it, you are ready to create
sequences, tables, etc. etc. by running this script.

In DBpg/create:

./run_sql_scripts.sh

This script will prompt several times whether you want to continue, skip a step, or exit. You can safely do a
step twice, but you’ll get some error messages (for example: ERROR: table "arrival" already exists).

List of actions this script does:
echo "--> Creating sequences in database $DBNAME as user trinetdb..."

echo "--> Granting privileges on sequences in database $DBNAME as user trinetdb..."

echo "--> Installing waveform_schema tables in $DBNAME as user trinetdb..."

echo "--> Installing parametric_schema tables in $DBNAME as user trinetdb..."

echo "--> Installing instrument_response_schema tables in $DBNAME as user trinetdb..."

echo "--> Installing hardware_schema tables in $DBNAME as user trinetdb..."

echo "--> Installing application_schema tables in $DBNAME as user trinetdb..."

echo "--> Granting privileges on all tables in schema trinetdb in database $DBNAME as user

trinetdb..."

echo "--> Generating pre-defined views needed by Jiggle in database $DBNAME as user trinetdb..."

echo "--> Loading stored procedures (functions) into database $DBNAME as user code..."

It may also prompt you for a password several times (if there is not a correct .pgpass in ${HOME}) (the
passwords were provided in pg.env) so if you want to pipe the output to a file, make sure to open another
window in which you can tail the output file to see if the script is waiting for input from you, e.g.:

./run_sql_scripts.sh > run.out

In another terminal window:
tail -f run.out

5

Alternatively, you can do everything step-by-step, by following the instructions in Appendix A although it is not
recommended because it is very easy to mess up a step (in particular, to forget specifying the database name
or the wrong database user).

Section 4. Load required meta-data
Some tables need to be loaded with information to enable the automatic processing of data. This section aims
to provide a comprehensive overview of all the meta-data needed, plus point to example loader scripts in
DPpg/gazetteer_data

Overview

Table name How is it used? Loader script?

epochtimebase It determines whether leapseconds are used, set to ‘T’ during creation of the table
(i.e. set to TRUE).

create_EPOCHTIMEBASE.sql

rt_role To determine whether the database is in “primary” role. TBD

leap_seconds Used by the TRUETIME functions to translate between nominal (w/o leapseconds)
and truetime (including leapseconds). Also used by Jiggle.

Init_leap_seconds.sql

magprefpriority This can optionally be left empty, used by all relevant programs to determine which
magnitude type should be set to “preferred” magnitude. See:
http://vault.gps.caltech.edu/trac/cisn/wiki/MagPrefPriority

example_magprefpriority.sql

stacorrections Me and Ml magnitude station corrections, used by trimag and Jiggle but not by
localmag (earthworm), See for example:
http://vault.gps.caltech.edu/trac/cisn/wiki/RT_trimag_man

magnitude_corrections.sql

gazetteer_region Define region polygons, used by ec and Jiggle pg_network_regions.sql

assoc_region_group Using this table allows you to assign different network codes to different events, used
by ec and Jiggle. See: http://vault.gps.caltech.edu/trac/cisn/wiki/TierII

example_assoc_region_group.sql

station_data Meta-data for channels processed by this system. Used by the real-time programs tc,
ec, trimag, rad2, and ampgen. Also used by Jiggle and these tables serve as the
source for several views used by Jiggle.

https://github.com/pnsn/aqms-ir
loadStationXML script or:

http://github.com/pnsn/fdsnsws-st
ation2aqms (which uses the
aqms-ir package but I (RH) am
not actively adding new options to
this script. I recommend using
getStationXML and
loadStationXML from the above.

channel_data

simple_response

channelmap_ampparms https://github.com/pnsn/aqms-ir
cliplevels in utils is a messy way
of getting what PNSN needs.

channelmap_codaparms Also filled by
https://github.com/pnsn/aqms-ir I

6

http://vault.gps.caltech.edu/trac/cisn/wiki/MagPrefPriority
http://vault.gps.caltech.edu/trac/cisn/wiki/RT_trimag_man
http://vault.gps.caltech.edu/trac/cisn/wiki/TierII
https://github.com/pnsn/aqms-ir
http://github.com/pnsn/fdsnsws-station2aqms
http://github.com/pnsn/fdsnsws-station2aqms
https://github.com/pnsn/aqms-ir
https://github.com/pnsn/aqms-ir

believe

program program-lookup-codes and channel lists for each program, program and
config_channel are mostly used by the RT systems and only contain currently active
channels.

Directly used by:

rad2 : ProgramName RAD-UW

Ampgen : ProgramName AmpGen

Trimag : ProgramName RAD-UW

Used to generate earthworm configuration files:
pick_ew_uw.sta

uw_sta.hinv

pnsn_trig.sta

config_channel

applications program-lookup-codes and channel lists for each program, applications and
appchannels are mostly used by PP systems and can contain the history of channels
at a site.

appchannels

● cd DBpg/gazetteer_data

● psql -U trinetdb -d DBNAME -W < pg_load_information.sql

Channel meta-data
This describes how to load the minimally required meta-data into the database tables Station_Data,
Channel_Data, and Simple_Response using a FDSN StationXML web service:

See: https://github.com/pnsn/fdsnws-station2aqms

Based on: https://github.com/pnsn/aqms-ir which includes a loadStationXML script that PNSN actually uses.
The above fdsnws-station2aqms script may be a bit neglected.

Appendices

Appendix A: List of individual steps
 These are the steps performed by scripts DBpg/create/run_as_postgres.sh and
DBpg/create/run_sql_scripts.sh. All instructions assume that your working directory is DBpg/create !! You will
have to change to the correct paths before running the sql-scripts. It is assumed that the DBpg checkout
directory is also called DBpg, if not, replace DBpg with whatever it is you used. It is also important to use the
postgres linux-user when needed, and to specify the correct database and database user where needed.

NOTE: if you are not using the default PG port (5432) make sure to provide the --port= or -p option to the psql
command!

7

https://github.com/pnsn/fdsnws-station2aqms
https://github.com/pnsn/aqms-ir
https://github.com/pnsn/fdsnws-station2aqms

Customize
1. in DBpg/create as the user has local write privileges

2. edit pg.env

3. ./generate_sql_scripts.sh

Create database
Replace DBNAME with database name specified in pg.env

● in DBpg/create

● sudo su postgres

● psql < db/pg_create_ DBNAME.sql

Activate PostGIS extension
● in DBpg/create as postgres linux user

● psql < db/pg_activate_extensions.sql

Create roles
1. in DBpg/create as postgres linux user
2. psql < users/pg_create_roles.sql

To list the newly created roles, connect to the database with psql and type \du

Create roles with login (users), schemas, grant privs, set search_paths
1. in DBpg/create as postgres linux user

2. psql -d DBNAME < users/pg_create_users.sql where DBNAME is the name of the
database you created (otherwise trinetdb schema is created in postgres

database rather than your target database because script does not only

create users but also creates trinetdb and code schemas, grants privileges

and sets search_path of each role).

To list the newly created roles, connect to the database with psql and type \du

Create sequences and grant privileges
VERY IMPORTANT: Sequences are used by AQMS software to derive primary keys from, which are required
to be unique, so if you are going to populate your PostgreSQL database with data from a previous database,
you need to make sure that the start values are set to the nextval of your old database’s sequence. Also,
because of the AQMS replication model, primary keys (sequences) generated from different databases
should not clash with each other. This is achieved by staggering the start value for each database, for
example:

8

sequence starts
rtdb 1
if ["$dbname" = "rtdb"]; then
 seq_start_value=1
 evid_start_value=60000001
fi

rtdb2
if ["$dbname" = "rtdb2"]; then
 seq_start_value=2
 evid_start_value=60000002
fi

archdb
if ["$dbname" = "archdb"]; then
 seq_start_value=3
 evid_start_value=70000003
fi

archdb2
if ["$dbname" = "archdb2"]; then
 seq_start_value=4
 evid_start_value=80000004
fi

You have to create the sequences as user trinetdb for them to be in the trinetdb schema and owned by
trinetdb, you also have to grant select privileges to trinetdb_write and code (replace DBNAME by correct
database name):

1. in DBpg/create

2. psql -U trinetdb -W -d DBNAME < sequences/pg_create_dbname_sequences.sql
3. psql -U trinetdb -W -d DBNAME < sequences/pg_grant_all_sequences.sql

Create database tables and grant privileges
cd DBpg/create/tables/waveform_schema

psql -U trinetdb -W -d DBNAME < pg_install_waveform_tables.sql

cd DBpg/create/tables/parametric_schema

psql -U trinetdb -W -d DBNAME < pg_install_parametric_tables.sql

cd DBpg/create/tables/instrument_response_schema

psql -U trinetdb -W -d DBNAME < pg_install_instrument_response_tables.sql

9

cd DBpg/create/tables/hardware_schema

psql -U trinetdb -W -d DBNAME < pg_install_hardware_tables.sql

cd DBpg/create/tables/application_schema

psql -U trinetdb -W -d DBNAME < pg_install_application_tables.sql

cd DBpg/create/tables

psql -U trinetdb -W -d DBNAME < pg_grant_all_tables.sql

Create database views
cd DBpg/views

psql -U trinetdb -W -d DBNAME < pg_generate_views.sql
psql -U trinetdb -W -d DBNAME < pg_grant_views.sql

Load stored procedures
cd DBpg/storedprocedures

psql -U code -d DBNAME -W < install_as_user_code.sql
psql -U trinetdb -d DBNAME -W < install_as_user_trinetdb.sql

as postgres:

psql -d DBNAME < install_as_user_postgres.sql

Appendix B: psql cheat sheet

Connecting to the database server as postgres (assuming peer
authentication)
sudo su postgres

Psql

list db names while in psql

psql>\l

connect to database DBNAME

psql>\c DBNAME

Connecting to specific database as a specific database user (role) with a
password
psql -d dbname -U rolename -W

10

If you have a .pgpass file in $HOME with the correct permissions and the PGPASSFILE variable set, you can
use lower-case w to avoid being prompted for the password:

psql -d dbname -U rolename -w

11

